Citation: ZHAO Ya-Jie,  XIAO Xiao,  MA Ping-An,  LIN Jun. Application of Hollow Manganese Carbonate Nanocarriers in Chemodynamic/Sonodynamic Tumor Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2015-2022. doi: 10.19756/j.issn.0253-3820.210626 shu

Application of Hollow Manganese Carbonate Nanocarriers in Chemodynamic/Sonodynamic Tumor Therapy

  • Corresponding author: MA Ping-An,  LIN Jun, 
  • Received Date: 12 July 2021
    Revised Date: 28 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.51720105015, 51672269, 51929201, 51922097, 51772124, 51872282), the Science and Technology Cooperation Project between Chinese and Australian Governments (No.2017YFE0132300).

  • It is an effective attempt to increase the level of reactive oxygen species (ROS) to abrogate the redox balance and successively result in sever cells oxidative damage and death in cancer treatment. Herein, biodegradable, safe and tumor-specific hollow manganese carbonate (MnCO3) nanocarriers (HMC NPs) were synthesized by hydrothermal method. HMC NPs loaded with sonosensitizer protoporphyrin (PpIX) constituted HMC-PpIX nanoparticles (HMC-P NPs), which could be activated in the acidic tumor microenvironment (TME). By degrading and releasing Mn2+ and sonosensitizer, the overloaded Mn2+ in the tumor triggered the Fenton reaction under the physiological buffer environment of HCO3-/CO2, which converted the over-expressed endogenous hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (·OH). Moreover, under the irradiation of ultrasound, PpIX could convert oxygen in cells to singlet oxygen (1O2), forming continuous and accumulated oxygen stress. The synergistic treatment of chemodynamic therapy (CDT) and sonodynamic therapy (SDT) could produce a large amount of reactive oxygen species in tumor cells, which broke the self-regulation ability of malignant tumor cells, and caused oxidative damage to multiple intracellular organelles, and ultimately led to the death of cancer cells. In addition, under the adjuvant treatment of anticancer drugs doxorubicin (DOX) and ultrasound irradiation, the killing efficiency of cancer cell was about 90%. And the experimental group also achieved good tumor inhibition effects in vivo.
  • 加载中
    1. [1]

      GORRINI C, HARRIS I S, MAK T W. Nat. Rev. Drug Discovery, 2013, 12:931-947.

    2. [2]

      LIANG S, DENG X R, MA P A. CHENG Z Y, LIN J. Adv. Mater., 2020, 32:2003214.

    3. [3]

      HUANG P, QIAN X Q, CHEN Y, YU L D, LIN H, WANG L Y, ZHU Y F, SHI J L. J. Am. Chem. Soc., 2017, 39(3):1275-1284.

    4. [4]

      CHEN W, LIU C, JI X Y, JOSEPH J, TANG Z M, OUYANG J, XIAO Y F, KONG N, JOSHI N, FAROKHZAD O C, TAO W, XIE T. Angew. Chem., Int. Ed., 2021, 60(13):7155-7164.

    5. [5]

      FU J K, LI T, ZHU Y C, HAO Y Q. Adv. Funct. Mater., 2019, 29(51):1906195.

    6. [6]

      UM W, KO H, YOU D G, LIM S, KWAK G, SHIM M K, YANG S, LEE J, SONG Y, KIM K, PARK J H. Adv. Mater., 2020, 32(16):1907953.

    7. [7]

      LIN L S, HUANG T, SONG J B, OU X Y, WANG Z T, DENG H Z, TIAN R, LIU Y J, WANG J F, LIU Y,YU G C, ZHOU Z J, WANG S, NIU G, YANG H H, CHEN X Y. J. Am. Chem. Soc., 2019, 141(25):9937-9945.

    8. [8]

      SHI L A, WANG Y J, ZHANG C, ZHAO Y, LU C, YIN B L, YANG Y, GONG X Y, TENG L L, LIU Y L, ZHANG X B, SONG G S. Angew. Chem., Int. Ed., 2021, 60(17):9562-9572.

    9. [9]

      LIN L S, SONG J B, SONG L, KE K M, LIU Y J, ZHOU Z J, SHEN Z Y, LI J, YANG Z, TANG W, NIU G, YANG H H, CHEN X Y. Angew. Chem., Int. Ed., 2018, 57(18):4902-4906.

    10. [10]

      DING B B, SHAO S, JIANG F, DANG P P, SUN C Q, HUANG S S, MA P A, JIN D Y, Al KHERAIF A A, LIN J. Chem. Mater., 2019, 31(7):2651-2660.

    11. [11]

      QI C, HE J, FU L H, HE T, BLUM N T, YAO X K, LIN J, HUANG P. ACS Nano, 2021, 15(1):1627-1639.

    12. [12]

      WANG P, LIANG C, ZHU J W, YANG N, JIAO A H, WANG W J, SONG X J, DONG X C. ACS Appl. Mater. Interfaces, 2019, 11(44):41140-41147.

    13. [13]

      MURA S, NICOLAS J, COUVREUR P. Nat. Mater., 2013, 12(11):991-1003.

    14. [14]

      USHIO-FUKAI M, NAKAMURA Y. Cancer Lett., 2008, 266(1):37-52.

    15. [15]

      GAO S T, JIN Y, GE K, LI Z H, LIU H F, DAI X Y, ZHANG Y H, CHEN S Z, LIANG X J, ZHANG J C. Adv. Sci., 2019, 6(24):1902137.

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(17)
  • Abstract views(860)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return