Citation: SHAO Wen-Ya,  LIANG Yu,  LIU Jian-Xi,  LIU Hong-Tao,  WANG Zhao-Wei,  SUI Zhi-Gang,  ZHAO Bao-Feng,  ZHANG Xiao-Dan,  LIANG Zhen,  ZHANG Li-Hua,  ZHANG Yu-Kui. O-GlcNAcylation Quantification Based on Electron-Transfer/Higher-Energy Collisional Dissociation and Its Application in O-GlcNAcylation Site Mapping of Liver Proteomics in High Fat Diet-fed Mice[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2106-2116. doi: 10.19756/j.issn.0253-3820.210623 shu

O-GlcNAcylation Quantification Based on Electron-Transfer/Higher-Energy Collisional Dissociation and Its Application in O-GlcNAcylation Site Mapping of Liver Proteomics in High Fat Diet-fed Mice

  • Corresponding author: ZHANG Li-Hua, lihuazhang@dicp.ac.cn
  • Received Date: 12 July 2021
    Revised Date: 26 September 2021

    Fund Project: Supported by the Natural Science Foundation of Fujian Province, China (No.2020J01641), the National Natural Science Foundation of China (No.21605020) and the Fund Project of Fujian Medical University (No.2018QH1007).

  • O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a single carbohydrate moiety post-translational modification that occurs on serine and threonine side chains of intracellular protein and plays an important role in nutrient metabolism. However, the great research challenges are the inherently low stoichiometry, poor ionization efficiency of O-GlcNAc peptides and no specific animo acid sequence. In this study, a strategy for quantitative detection of O-GlcNAc sites was developed by combining pseudo-isobaric dimethyl strategy, which was applied for the O-GlcNAcylation sites profiling towards the mice liver. In total, 783 O-GlcNAc sites were unambiguously quantified from high-fat fed mice liver. Among which, 122 O-GlcNAc sites were differentially expressed, corresponding to 85 O-GlcNAc proteins. Finally, the biological function of the differentially expressed O-GlcNAc proteins was analyzed.
  • 加载中
    1. [1]

      TORRES C R, HART G W. J. Biol. Chem., 1984, 259(5):3308-3317.

    2. [2]

      ORTIZ-MEOZ R F, MERBL Y, KIRSCHNER M W, WALKER S. J. Am. Chem. Soc., 2014, 136(13):4845-4848.

    3. [3]

      LEE J S, ZHANG Z G. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(23):E3213-E3220.

    4. [4]

      JANELTAKO J, TRAUGER S A, LAZARUS M B, WALKER S. Nat. Chem. Biol., 2016, 12(11):899-901.

    5. [5]

      SMET-NOCCA C, BRONCEL M, WIERUSZESKI J M, TOKARSKI C, HANOULLE X, LEROY A, LANDRIEU I, ROLAANDO C, LIPPENS G, HACHENBERGER C P R. Mol. Biosyst., 2011, 7(5):1420-1429.

    6. [6]

      LEVINE Z G, FAN C, MELICHER M S, ORMAN M, BENJAMIN T, WALKER S. J. Am. Chem. Soc., 2018, 140(10):3510-3513.

    7. [7]

      TRAN D H, MAY H I, LI Q F, LUO X, NIEWORD E, WANG X D, GILLETTE T G, DENG Y F, WANG Z V. Nat. Commun., 2020, 11(1):1771.

    8. [8]

      LAGERLOF O, SLOCOMB J E, HONG I, APONTE Y, BLACKSHOW S, HART G W, HUGANIR R L. Science, 2016, 351(6279):1293-1296.

    9. [9]

      HOUSLEY M P, RODGERS J T, UDESHI N D, KELLY T J, ShABANOWITZ J, HUNT D F, PUIGSERVER P, HART G W. J. Biol. Chem., 2008, 283(24):16283-16292.

    10. [10]

      ZHAO M, REN K Q, XIONG X W, CHENG M, ZHANG Z D, HUANG Z, HAN X N, YANG X Y, ALEJANDROl E U, RUAN H B. Cell. Rep., 2020, 32(6):108013.

    11. [11]

      YOON C K, YOON S Y, HWANG J S, SHIN Y J. Curr. Eye Res., 2020, 45(5):556-562.

    12. [12]

      DIERSCHKE S K, TORO A L, MILLER W P, SUNILKUMAR S, DENNIS M D. J. Biol. Chem., 2020,295(31):10831-10841.

    13. [13]

      YANG Y F, FU M N, LI M D, ZHANG K S, ZHANG B C, WANG S M, LIU Y Y, NI W M, ONG Q X, MI J, YANG X Y. Nat. Commun., 2020, 11:181.

    14. [14]

      BANERJEE P S, MA J F, HART G W. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(19):6050-6055.

    15. [15]

      MAROTTA N P, LIN Y H, LEWIS Y E, AMBROSO M R, ZARO B W, ROTH M T, ARNOLD D B, LANGEN R, PRATT M R. Nat. Chem., 2015, 7(11):913-920.

    16. [16]

      TRINIDAD J C, BARKAN D T, GULLUDGE B F, THALHAMMER A, SALI A, SCHOEPFER R, BURLINGAME A L. Mol. Cell. Proteomics, 2012, 11(8):215-229.

    17. [17]

      ZENG Q, ZHAO R X, CHEN J, LI Y, LI X D, LIU X L, ZHANG W M, QUAN C S, WANG Y S, ZHAI Y X, WANG J W, YOUSSELF M, CUI R, LIANG J, GENOVESE N, CHOW L T, LI Y L, XU Z X. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(33):9333-9338.

    18. [18]

      XIE S T, JIN N N, GU J L, SHI J H, SUN J M, CHU D D, ZHANG L, DAI C L, GU J H, GONG C X, IQBAL K, LIU F. Aging Cell, 2016, 15(3):455-464.

    19. [19]

      SUTTAPITUGSAKUL S, SUN F X, WU R H. Anal. Chem., 2020, 92(1):267-291.

    20. [20]

      XIAO H P, TANG G X, WU R H. Anal. Chem., 2016, 88(6):3324-3332.

    21. [21]

      PARKER B L, THAYSEN-ANDERSEN M, FAZAKERLY D J, HOLLIDAY M, PACKER N H, JAMES D E. Mol. Cell. Proteomics, 2016, 15(1):141-153.

    22. [22]

      MA J F, HART G W. Expert Rev.Proteomic, 2013, 10(4):365-380.

    23. [23]

      ZHOU Y, SHAN Y C, WU Q, ZHANG S, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(22):10658-10663.

    24. [24]

      HIRAIKE Y, WAKI H, YU J, NAKAMURA M, MIYAKE K, NAGANO G, NAKAKI R, SUZUKI K, KOBAYASHI H, YAMATOTO S, SUN W, AOYAMA T, HIROTA Y, OHNO H, OKI K, YONEDA M, WHITE A P, TSENG Y H, CYPESS A M, LARSEN T J, JESPERSEN N Z, SCHEELE C, TSUTSUMI S, ABURATANI H, YAMAUCHI T, KADOWAKI T. Nat. Cell. Biol., 2017, 19(9):1081-1092.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    11. [11]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(13)
  • Abstract views(834)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return