Citation: XIE Chen-Xia,  ZENG Chao,  ZHUANG Qian-Fen,  WANG Yong. Adenosine-stabilized Copper Nanocluster as Fluorescent Probe for Detection of Au(Ⅲ) Ion and Cysteine[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1824-1833. doi: 10.19756/j.issn.0253-3820.210619 shu

Adenosine-stabilized Copper Nanocluster as Fluorescent Probe for Detection of Au(Ⅲ) Ion and Cysteine

  • Corresponding author: ZHUANG Qian-Fen, qfzhuang@ncu.edu.cn
  • Received Date: 9 July 2021
    Revised Date: 26 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.31960495, 32160600, 21864017), the Science and Technology Innovation Platform Project of Jiangxi Province, China (No.20192BCD40001), the Open Project Program of State Key Laboratory of Food Science and Technology, Nanchang University (No.SKLF-KF-201810), and the State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (No.SKLCBC-2018007).

  • A fluorescent "turn-off-on" sensor was constructed for detection of Au(Ⅲ) ions and cysteine on the basis of fluorescence quenching of adenosine-stabilized copper nanocluster by Au(Ⅲ) ions and cysteine-induced fluorescence enhancement of the adenosine-stabilized copper nanocluster/Au(Ⅲ) system. The adenosine-stabilized copper nanocluster-based sensor gave a linear range of 0.05-10 μmol/L with detection limit of 0.02 μmol/L, and the adenosine-stabilized copper nanocluster/Au(Ⅲ)-based sensor provided a linear range of 5-60 μmol/L with detection limit of 1.6 μmol/L. In addition, the results showed that the fluorescence quenching of adenosine-stabilized copper nanocluster by Au(Ⅲ) ion was mainly originated from the super amplification static quenching effect, and the fluorescence enhancement of the adenosine-stabilized copper nanocluster/Au(Ⅲ) by cysteine mainly arose from the complex reaction between cysteine and Au(Ⅲ) and the removal of Au(Ⅲ) on the adenosine-stabilized copper nanocluster/Au(Ⅲ) system. Additionally, the fluorescence sensor for Au(Ⅲ) ions and cysteine possessed high selectivity, and could be successfully used for detection of Au(Ⅲ) ions in water samples and cysteine in pharmaceutical preparations.
  • 加载中
    1. [1]

      ZAMMIT C M, QUARANTA D, GIBSON S, ZAITOUNA A J, TA C, BRUGGER J, LAI R Y, GRASS G, REITH F. PloS One, 2013, 8(8):e69292.

    2. [2]

      ZHANG J F, ZHOU Y, YOON J, KIM J S. Chem. Soc. Rev., 2011, 40(7):3416-3429.

    3. [3]

      LI R S, ZHANG H Z, LING J, HUANG C Z, WANG J. Appl. Spectrosc. Rev., 2016, 51(2):129-147.

    4. [4]

      KAZEMI E, DADFARNIA S, SHABANI A M H. Talanta, 2015, 141:273-278.

    5. [5]

      BUTLER O T, COOK J M, HARRINGTON C F, HILL S J, RIEUWERTS J, MILES D L. J. Anal. At. Spectrom., 2007, 22(3):187-221.

    6. [6]

      PHILLIPS A A, WU F F, SESSIONS A L. Rapid Commun. Mass Spectrom., 2021, 35(4):e9007.

    7. [7]

      CAPITAN P, MALMEZAT T, BREUILLE D, OBLED C. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 1999, 732(1):127-135.

    8. [8]

      PITSANUWONG C, BOONWAN J, CHOMNGAM S, WECHAKORN K, KANJANASIRIRAT P, PEWKLIANG Y, BORWORNPINYO S, KONGSAEREE P. J. Fluoresc., 2021, 31(4):1211-1218.

    9. [9]

      SINTHUPRASERT P, PETDUM A, SWANGLAP, PANCHAN W, SOOKSIMUANG T, WANICHACHEVA N, SETTHAKARN K. J. Braz. Chem. Soc., 2021, 32(4):852-859.

    10. [10]

      YANG J L, YANG Y H, XUN Y P, WEI K K, GU J, CHEN M, YANG L J. ACS Omega, 2019, 4(18):17903-17909.

    11. [11]

      LIU K, GU H, SUN Y Z, XU C, YANG S Z, ZHU B L. Food Chem., 2021, 356:129658.

    12. [12]

      CHAI G P, LIU Q W, FEI Q, ZHANG J L, SUN X X, SHAN H Y, FENG G D, HUAN Y F. Luminescence, 2018, 33(1):153-160.

    13. [13]

      CHU Y F, CEN Y J, SONG Y X, XU Z X, HU L P, LI H Q, YANG C L. Color. Technol., 2020, 136(4):381-388.

    14. [14]

      LIU J S, WANG B, XU M J, WANG L Z, ZHOU Z H. J. Lumin., 2017, 185:258-262.

    15. [15]

      BORGHEI Y S, HOSSEINI M, KHOOBI M, GANJALI M R. J. Fluoresc., 2017, 27(2):529-536.

    16. [16]

      WANG Y, CHEN T X, ZHUANG Q F, NI Y N. ACS Appl. Mater. Interfaces, 2017, 9(37):32135-32141.

    17. [17]

      LAKOWICZ J R. Principles of Fluorescence Spectroscopy, 3rd Ed. New York:Springer-Verlag, 2006.

    18. [18]

      GIBSON D W, BEER M, BARRNETT R J. Biochemistry, 1971, 10(20):3669-3679.

    19. [19]

      LIU J Z, ZHONG Y C, LU P, HONG Y N, LAM J W Y, FAISAL M, YU Y, WONG K S, TAMG B Z. Polym. Chem., 2010, 1(4):426-429.

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    9. [9]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    10. [10]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    11. [11]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    17. [17]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

Metrics
  • PDF Downloads(6)
  • Abstract views(951)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return