Citation: ZHAO Hui-Fang,  ZHAO Hua-Yu,  YI Si-Wen,  ZHANG Rui-Ping. Nickel Nanoparticles/Graphene Composite as New Matrix-assisted Laser Desorption/Ionization Matrix and Adsorbent for Highly Efficient Mass Spectrometry Analysis of Small Biomolecules[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2055-2066. doi: 10.19756/j.issn.0253-3820.210604 shu

Nickel Nanoparticles/Graphene Composite as New Matrix-assisted Laser Desorption/Ionization Matrix and Adsorbent for Highly Efficient Mass Spectrometry Analysis of Small Biomolecules

  • Corresponding author: ZHANG Rui-Ping, zrp_7142@sxmu.edu.cn
  • Received Date: 2 July 2021
    Revised Date: 24 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22004082, 81771907) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (No.2020L0173).

  • The nickel nanoparticles/graphene (Ni/Gr) composite synthesized here was served as a novel matrix and adsorbent for highly efficient matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis of various pharmaceutical molecules and amino acids. In comparison with 2,5-dihydroxybenzoic acid (DHB) and the control substances (Gr, Ni-1/Gr, Ni-5/Gr), the Ni-2/Gr matrix exhibited excellent performances in detection of resveratrol, 6-gingerol and rutin under positive-ion mode, including low background noise, high ion intensity, high signal to noise ratio and wide linear range (0.01-50 μmol/L, 0.2-50 μmol/L and 0.05-60 μmol/L). Meanwhile, the low limit of detection (LODs) of resveratrol, 6-gingerol and rutin were 0.0038 μmol/L, 0.09 μmol/L and 0.02 μmol/L, respectively. Benefiting from high surface area, abundant mesoporous structures, lots of sp2 structure, strong UV absorption and high saturation magnetization (Ms) value, Ni-2/Gr composite also acted as a favorable adsorbent for effectively analysis of L-phenylalanine, L-tryptophan and L-tyrosine with magnetic enrichment. Further, the low concentration of L-tryptophan spiked in mice serum bio-samples was directly enriched.
  • 加载中
    1. [1]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T, MATSUO T. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    2. [2]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20):2299-2301.

    3. [3]

      DALLONGEVILLE S, GARNIER N, ROLANDO C, TOKARSKI C. Chem. Rev., 2016, 116(1):2-79.

    4. [4]

      KIM M, PARK J M, YUN T G, NOH J Y, KANG M J, PYUN J C. ACS Appl. Mater. Interfaces, 2018, 10(40):33790-33802.

    5. [5]

      CORNETT D S, REYZER M L, CHAURAND P, CAPRIOLI R M. Nat. Methods, 2007, 4(10):828-833.

    6. [6]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399(6733):243-246.

    7. [7]

      MINHAS R S, RUDD D A, AI HMOUD H Z, GUINAN T M, KIRKBRIDE K P, VOELCKER N H. ACS Appl. Mater. Interfaces, 2020, 12(28):31195-31204.

    8. [8]

      KAWASAKI H, SUGITANI T, WATANABE T, YONEZAWA T, MORIWAKI H, ARAKAWA R. Anal. Chem., 2008, 80(19):7524-7533.

    9. [9]

      SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014,25(5):841-851.

    10. [10]

      SU H, LI X, HUANG L, CAO J, ZHANG M, VEDARETHINAM V, DI W, HU Z, QIAN K. Adv. Mater., 2021, 33(17):2007978.

    11. [11]

      KIM M J, PARK J M, YUN T G, NOH J Y, KANG M J, PYUN J C. Chem. Commun., 2020, 56(32):4420-4423.

    12. [12]

    13. [13]

      SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.

    14. [14]

      FAN B, ZHOU H, WANG Y, ZHAO Z, REN S, XU L, WU J, YAN H, GAO Z. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.

    15. [15]

      DONG X, CHENG J, LI J, WANG Y. Anal. Chem., 2010, 82(14):6208-6214.

    16. [16]

      SHI R, DAI X, LI W, LU F, LIU Y, QU H, LI H, CHEN Q, TIAN H, WU E, WANG Y, ZHOU R, LEE S T, LIFSHITZ Y, KANG Z, LIU J. ACS Nano, 2017, 11(9):9500-9513.

    17. [17]

      XU S, LI Y, ZOU H, QIU J, GUO Z, GUO B. Anal. Chem., 2003, 75(22):6191-6195.

    18. [18]

      CHEN S, ZHENG H, WANG J, HOU J, HE Q, LIU H, XIONG C, KONG X, NIE Z. Anal. Chem., 2013,85(14):6646-6652.

    19. [19]

      LUO P, WANG L, JIANG L, SUN J, LI Y, LIU H, XIONG C, NIE Z. ACS Appl. Mater. Interfaces, 2021,13(1):1914-1920.

    20. [20]

      ZHAO H, LI Y, WANG J, CHENG M, ZHAO Z, ZHANG H, WANG C, WANG J, QIAO Y, WANG J. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.

    21. [21]

      LU L, ZHENG G, WANG M, WANG D, XIA Z. Talanta, 2021, 222:121365.

    22. [22]

      SHENG A, YANG Y, YAN D X, DAI K, DUAN H, ZHAO G, LIU Y, LI Z M. Carbon, 2020, 167:530-540.

    23. [23]

      LI S, LIU J, SUN J, WANG Z, WANG K, GUO L, YANG S, WEI J, ZHENG X, ZHAO Z. Chin. Chem. Lett., 2021, 32(1):62-65.

    24. [24]

      BARUAH A, MONDAL S, SAHOO L, GAUTAM U K. J. Solid State Chem., 2019, 280:164-170.

    25. [25]

      LI N, LI S, LI T, YANG H, ZHANG Y, ZHAO Z. Anal. Chem., 2020, 92(7):5482-5491.

    26. [26]

      WANG J, MANGA K K, BAO Q, LOH K P. J. Am. Chem. Soc., 2011, 133(23):8888-8891.

    27. [27]

      WANG C, ZHAO H, WANG J, ZHAO Z, CHENG M, DUAN X, ZHANG Q, WANG J, WANG J. J. Mater. Chem. A, 2019, 7(4):1451-1458.

    28. [28]

      FU G, YAN X, CHEN Y, XU L, SUN D, LEE J M, TANG Y. Adv. Mater., 2018, 30(5):1704609.

    29. [29]

      XU W, WANG G S, YIN P G. Carbon, 2018, 139:759-767.

    30. [30]

      BALAMURUGAN J, NGUYEN T T, KIM N H, KIM D H, LEE J H. Nano Energy, 2021, 85:105987.

    31. [31]

      YANG X, GUO Q, YANG J, CHEN S, HU F, HU Y, LIN H. Food Chem., 2021, 338:127851.

    32. [32]

      ZHANG C, PING J, YE Z, YING Y. Sci. Total Environ., 2020, 742:140351.

    33. [33]

      WANG L, ZHANG Z. Anal. Chim. Acta, 2007, 592(2):115-120.

    34. [34]

      CHAISIWAMONGKHOL K, NGAMCHUEA K, BATCHELOR-MCAULEY C, COMPTON R G. Analyst, 2016, 141(22):6321-6328.

    35. [35]

      CHENG C, HUANG Y, WANG J, ZHENG B, YUAN H, XIAO D. Anal. Chem., 2013, 85(5):2601-2605.

    36. [36]

      ZHAN T, SUN X, WANG X, SUN W, HOU W. Talanta, 2010, 82(5):1853-1857.

    37. [37]

      YANG J, ZHANG W, ZHANG H, ZHONG M, CAO W, LI Z, HUANG X, NIE Z, LIU J, LI P, MA X, OUYANG Z. ACS Appl. Mater. Interfaces, 2019, 11(49):46140-46148.

    38. [38]

      KIM S, KWON S, KIM Y. Nanomaterials, 2021, 11(2):288-306.

    39. [39]

      KAWASAKI H, NAKAI K, ARAKAWA R, ATHANASSIOU E, GRASS R, STARK W. Anal. Chem., 2012,84(21):9268-9275.

    40. [40]

      SHI C, MENG J, DENG C. Chem. Commun., 2012, 48(18):2418-2420.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(7)
  • Abstract views(620)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return