Citation: GAO Jia-Qi,  LIN Zi-Han,  JIANG You,  XU He-Yi,  DAI Xin-Hua,  HUANG Ze-Jian,  FANG Xiang. Research Progress of Underwater Mass Spectrometry In Situ Analysis Technology[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 666-679. doi: 10.19756/j.issn.0253-3820.210570 shu

Research Progress of Underwater Mass Spectrometry In Situ Analysis Technology

  • Corresponding author: HUANG Ze-Jian,  FANG Xiang, 
  • Received Date: 17 June 2021
    Revised Date: 18 February 2022

    Fund Project: Supported by the Key Deployment Project of Center for Ocean Mega-science, Chinese Academy of Sciences (No.COMS2020J10) and the National Key Research and Development Plan of China (Nos.2016YFF0102603, 2017YFF0206204).

  • The deep-sea material circulation process has a great impact on human life. The establishment of fast, accurate and sensitive deep-sea in situ detection technology has important application value for detecting resources and protecting the environment. Mass spectrometry has the characteristics of fast detection speed, high sensitivity, and qualitative and quantitative detection of unknown substances. It can well capture the dynamic changes of chemical substances in the ocean and is very suitable for in-situ analysis of deep seas. This article reviewed recent researches on underwater mass spectrometry in situ analysis technology, summarized the development status and difficulties of the technology, and described the structural characteristics and limitations of the existing underwater mass spectrometry in situ analysis system. The future application prospects of the technology were also briefly described.
  • 加载中
    1. [1]

      MARTIN W, BAROSS J, KELLEY D, RUSSELL M. J. Nat. Rev. Microbiol., 2008, 6(11):805-814.

    2. [2]

      BAROSS J A, HOFFMAN S E. Origins Life Evol. Biospheres, 1985, 15(4):327-345.

    3. [3]

      MOORE T S, MULLAUGH K M, HOLYOKE R R, MADISON A S, YUCEL M, LUTHER G W. Annu. Rev. Mar. Sci., 2009, 1(1):91-115.

    4. [4]

      BOULART C, PRIEN R, CHAVAGNAC V, DUTASTA J P. Environ. Sci. Technol., 2013, 47(15):8582-8590.

    5. [5]

      WANKEL S D, GERMANOVICH L N, LILLEY M D, GENC G, DIPERNA C J, BRADLEY A S, OLSON E J, GIRGUIS P R. Nat. Geosci., 2011, 4(7):461-468.

    6. [6]

      KATO N, CHOYEKH M, DEWANTARA R, SENGA H, CHIBA H, KOBAYASHI E, YOSHIE M, TANAKA T, SHORT T. J. Loss Prev. Process Ind., 2017, 50:386-396.

    7. [7]

      WANKEL S D, JOYE S B, SAMARKIN V A, SHAH S R, FRIEDERICH G, MELAS-KYRIAZI J, GIRGUIS P R. Deep Sea Res., Part II, 2010, 57(21-23):2022-2029.

    8. [8]

      GENTZA T, DAMM E, JENS S, MAU S, MCGINNIS D F, SCHLUTER M. Cont. Shelf Res., 2014, 72:107-118.

    9. [9]

      STOW D, MAYALL M. Mar. Pet. Geol., 2000, 17(2):125-135.

    10. [10]

      MILLS G, FONES G. Sensor Rev., 2012, 32(1):17-28.

    11. [11]

      CAMILLI R, HEMOND H F. TrAC-Trends Anal. Chem., 2004, 23(4):307-313.

    12. [12]

      FUKUBA T, FUJII T. Lab Chip, 2021, 21(1):55-74.

    13. [13]

      JOHNSON K S, COALE K H, JANNASCH H W. Anal. Chem., 1992, 64(22):1065-1075.

    14. [14]

      HEMOND H, CAMILLI R. TrAC-Trends Anal. Chem., 2002, 21(8):526-533.

    15. [15]

      PRIEN R D. Mar. Chem., 2007, 107(3):422-432.

    16. [16]

      YOSHIDA H, HYAKUDOME T, ISHIBASHI S, SAWA T, TSUKIOKA S, AOKI T, TANI T, IWATA M, MORIGA T. ECS Trans., 2010, 26(1):67-76.

    17. [17]

      ERIKSEN C C, OSSE T J, LIGHT R D, WEN T, LEHMAN T W, SABIN P L, BALLARD J W, CHIODI A M. IEEE J. Oceanic Eng., 2001, 26(4):424-436.

    18. [18]

      MCPHAIL S. J. BionicEng., 2009, 6(1):55-62.

    19. [19]

      CHUA E J, SAVIDGE W, SHORT R T, CARDENAS-VALENCIA A M, FULWEILER R W. Front. Mar. Sci., 2016, 3:1-24.

    20. [20]

      BELL R J, SAVIDGE W B, TOLER S K, BYRNE R H, SHORT R T. Limnol. Oceanogr.:Methods, 2012, 10(3):117-128.

    21. [21]

      ATKINSON M J, THOMAS F I M, LARSON N, TERRILL E, MORITA K, LIU C C. Deep Sea Res., Part I, 1995, 42(5):761-771.

    22. [22]

      SCHROEDER C R, NEURAUTER G, KLIMANT I. Microchim. Acta, 2007, 158(3-4):205-218.

    23. [23]

      JOHNSON J E. Anal. Chim. Acta, 1999, 395(1-2):119-132.

    24. [24]

      KRAFT M, JAKUSCH M, KARLOWATZ M, KATZIR A, MIZAIKOFF B. Appl. Spectrosc., 2003, 57(6):591-599.

    25. [25]

      LE BRIS N, SARRADIN P M, BIROT D, ALAYSE-DANET A M. Mar. Chem., 2000, 72(1):1-15.

    26. [26]

      BUTMAN B, MARTINI M, MICKELSON M J. J. Atmos. Ocean. Technol., 2007, 24(11):1924-1935.

    27. [27]

      ZHAO P, CAI W. Anal. Chem., 1997, 69(24):5052-5058.

    28. [28]

      BATTAGLIA T M, DUNN E E, LILLEY M D, HOLLOWAY J, DABLE B K, MARQUARDT B J, BOOKSH K S. Analyst, 2004, 129(7):602-606.

    29. [29]

      BREWER P G, MALBY G, PASTERIS J D, WHITE S N, PELTZER E T, WOPENKA B, FREEMAN J, BROWN M O. Deep Sea Res., Part I, 2004, 51(5):739-753.

    30. [30]

      BOULART C, PRIEN R, CHAVAGNAC V, DUTASTA J P. Environ. Sci. Technol., 2013, 47(15):8582-8590.

    31. [31]

      DULLO F T, LINDECRANTZ S, JANA J, JORN H H, ENGQVIST M, STIAN A S, OLAV G H, Opt. Express, 2015.

    32. [32]

      GRILLI R, TRIEST J, CHAPPELLAZ J, CALZAS M, DESBOIS T, JANSSON P, GUILLERM C, FERRE B, LECHEVALLIER L, LEDOUX V, ROMANINI D. Environ. Sci. Technol, 2018, 52(18):10543-10551.

    33. [33]

      MICHEL A P M, WANKEL S D, KAPIT J, SANDWITH Z, GIRGUIS P R. Deep Sea Res., Part I, 2018, 150:57-66.

    34. [34]

      GOUEGUEL C L, BHATT C R, JAIN J C, LOPANO C L, MCINTYRE D L. Opt. Laser Technol., 2018, 108:53-58.

    35. [35]

      VELOSO-ALARCON M E, JANSSON P, DE B M, MINSHULL T A, WESTBROOK G K, PALIKE H, BUNZ S, WRIGHT I, GREINERT J. Geophys. Res. Lett., 2019, 46(15):9072-9081.

    36. [36]

      CAMILLI R, DURYEA A. Proc. MTS/IEEE Oceans 2007, 1-5:1968-1973.

    37. [37]

      BELL R J, SHORT R T, VAN AMEROM F H W, BYRNE R H. Environ. Sci. Technol., 2007, 41(23):8123-8128.

    38. [38]

      KIBELKA G P, SHORT R T, TOLER S K, EDKINS J E, BYRNE R H. Talanta, 2004, 64(4):961-969.

    39. [39]

      HEMOND H F, MUELLER A V, HEMOND M. J. Am. Soc. Mass Spectrom., 2008, 19(10):1403-1410.

    40. [40]

      CAMILLI R, NOMIKOU P, ESCARTIN J, RIDAO P, MALLIOS A, KILIAS S P, ARGYRAKI A. Sci. Rep., 2015, 5:12152.

    41. [41]

      SCHLUTER M, GENTZ T. J. Am. Soc. Mass Spectrom., 2008, 19(10):1395-1402.

    42. [42]

      GEREIT F, HAUPTMANN P, MATZ G, MELLERT V, REUTER R. Oceanol. Int., 1998:55-69.

    43. [43]

      WENNER P G, BELL R J, AMEROM F, TOLER S K, EDKINS J E, HALL M L, KOEHN K, SHORT R T, BYRNE R H. TrAC-Trends Anal. Chem., 2004, 23(4):288-295.

    44. [44]

      HOCH G, KOK B. Arch. Biochem. Biophys., 1963, 101(1):160-170.

    45. [45]

      BURLACOT A, LI-BEISSON Y, PELTIER G. Plant Physiol., 2020, 183(2):451-454.

    46. [46]

      GEHM C, STREIBEL T, EHLERT S, SCHULZ-BULL D, ZIMMERMANN R. Anal. Chem., 2019, 91(24):15547-15554.

    47. [47]

      KAISER J, REUER M K, BARNETT B, BENDER M L. Geophys. Res. Lett., 2005, 32(19):1-5.

    48. [48]

      TORTELL P D. Limnol. Oceanogr.:Methods, 2005, 3:24-37.

    49. [49]

      XIAO K, WU J, LI H, HONG Y, WILSON A M, JIAO J J, SHANANAN M. Sci. Total Environ., 2018, 635:586-597.

    50. [50]

      RITZ S, DAHNKE K, FISCHER H. Aquat. Sci., 2018, 80(1):1-13.

    51. [51]

      JOHNSON R C, COOKS R G, ALLEN T M, CISPER M E, HEMBERGER P H. Mass Spectrom. Rev., 2000, 19(1):1-37.

    52. [52]

      CHENG Y, LIU M, ZHAO B, YANG L, GUO C, ZHANG L. Talanta, 2021, 221:121464.

    53. [53]

      THOMPSON A J, CREBA A S, FERGUSON R M, KROGH E T, GILL C G. Rapid Commun. Mass Spectrom., 2006, 20(13):2000-2008.

    54. [54]

      LAPACK M A, TOU J C, ENKE C G. Anal. Chem., 1990, 62(13):1265-1271.

    55. [55]

      MIRANDA L D, BYRNE R H, SHORT R T, BELL R J. Talanta, 2013, 116:217-222.

    56. [56]

      OH K S, KOO Y M, JUNG K W. Int. J. Mass Spectrom., 2006, 253(1-2):65-70.

    57. [57]

      QUIROGA R Q, GARCIA H. Clin. Neurophysiol., 2003, 114(2):376-390.

    58. [58]

      SHORT R T, FRIES D P, TOLER S K, LEMBKE C E, BYRNE R H. Meas. Sci. Technol., 1999, 10(12):1195-1201.

    59. [59]

      BODDEKER K W, BENGTSON G, BODE E. J. Membr. Sci., 1990, 53(1-2):143-158.

    60. [60]

      BODDEKER K W, BENGTSON G, PINGEL H. J. Membr. Sci., 1990, 54(1-2):1-12.

    61. [61]

      BODDEKER K W, BENGTSON G, PINGEL H, DOZEL S. Desalination, 1993, 90(1-3):249-257.

    62. [62]

      PENG M, VANE L M, LIU S X. J. Hazard. Mater., 2003, 98(1-3):69-90.

    63. [63]

      PENG P, SHI B, LAN Y. Sep. Sci. Technol., 2010, 46(2):234-246.

    64. [64]

      SUKITPANEENIT P, CHUNG T. J. Membr. Sci., 2011, 374(1-2):67-82.

    65. [65]

      VANE L M. J. Chem. Technol. Biot., 2005, 80(6):603-629.

    66. [66]

      MIRANDA L D, BELL R J, SHORT R T, VAN AMEROM F H W, BYRNE R H. J. Membr. Sci., 2011, 385(1-2):49-56.

    67. [67]

      PINNAU I, TOY L G. J. Membr. Sci., 1996, 109(1):125-133.

    68. [68]

      BLUME I, BAKER R W. J. Membr. Sci., 1990, 49(3):253-286.

    69. [69]

      ADYMKANOV S V, YAMPOL'SKII Y P, POLYAKOV A M, BUDD P M, REYNOLDS K J, MCKEOWN N B, MSAYIB. Polym. Sci., Ser. A, 2008, 50(4):444-450.

    70. [70]

      STONE M L, GRESHAM G L, POLSON L A. Anal. Chim. Acta, 2000, 407(1):311-317.

    71. [71]

      UPTON K T, SCHILLING K A, BEAUCHAMP J L. Anal. Methods, 2017, 9(34):5065-5074.

    72. [72]

      HAYEN H, KARST U. J. Chromatogr. A, 2003, 1000(1-2):549-565.

    73. [73]

      CARROLL D I, DZIDIC I, HORNING E C, STILLWELL R N. Appl. Spectrosc. Rev., 1990, 17(3):337-406.

    74. [74]

      KEBARLE P. J. Mass Spectrom., 2015, 35(7):804-817.

    75. [75]

      GARDEN R W, SWEEDLER J V. Anal. Chem., 2000, 72(1):30-36.

    76. [76]

      CAMILLI R, REDDY C M, YOERGER D R, VAN MOOY B A S, JAKUBA M V, KINSEY J C, MCINTYRE C P, SYLVA S P, MALONEY J V. Science, 2010, 330(6001):201-204.

    77. [77]

      MIELCZAREK P, SILBERRING J, SMOLUCH M. Mass Spectrom. Rev., 2019, 39(5-6):453-470.

    78. [78]

      BURGOYNE T W, HIEFTJE G M, HITES R A. J. Am. Soc. Mass Spectrom., 1997, 8(4):307-318.

    79. [79]

      DIAZ J A, GIESE C F, GENTRY W R. J. Am. Soc. Mass Spectrom., 2001, 12(6):619.

    80. [80]

      SINHA M P, NEIDHOLDT E L, HUROWITZ J, STURHAHN W, BEARD B, HECHT M H. Rev. Sci. Instrum., 2011, 82(9):263.

    81. [81]

      SNYDER D T, PULLIAM C J, OUYANG Z, COOKS R G. Anal. Chem., 2015, 88(1):2-29.

    82. [82]

      GETTY S A, BRINCKERHOFF W B, CORNISH T, ECELBERGER S, FLOYD M. Rapid Commun. Mass Spectrom., 2012, 26(23):2786-2790.

    83. [83]

      GETTY S A, BRINCKERHOFF W B, LI X, ELSILA J, CORNISH T, ECELBERGER S, WU Q, ZARE R. IEEE Aerosp., 2014:1-6.

    84. [84]

      RIEDO A, MEYER S, HEREDIA B, NEULAND M B, BIELER A, TULEJ M, LEYA I, IAKOVLEVA M, MEZGER K, WURZ P. Planet. Space Sci., 2013, 87:1-13.

    85. [85]

      JOHNSON J, LEE K, BHANOT J, MCLUCKEY S. J. Am. Soc. Mass Spectrom., 2019, 30(4):588-594.

    86. [86]

      GENTZ T, SCHLUTER M. Limnol. Oceanogr.:Methods, 2012, 10(5):317-328.

    87. [87]

      SHORT R T, FRIES D P, KERR M L, LEMBKE C E, TOLER S K, WENNER P G, BYRNE R H. J. Am. Soc. Mass Spectrom., 2001, 12(6):676-682.

    88. [88]

      HEMOND H F. Rev. Sci. Instrum., 1991, 62(6):1420-1425.

    89. [89]

      HARTNETT H E, SEITZINGER S P. Mar. Chem., 2003, 83(1-2):23-30.

    90. [90]

      MCMURTRY G M, LEE J S, KOLOTYRKINA I Y, KIM K H. IEEE OCEANS, 2012-YEOSU, 2012:1-6.

    91. [91]

      CHOYEKH M, KATON, SHORT T, UKITA M, YAMAGUCHI Y, SENGA H, YOSHIE M, TANAKA T, KOBAYASHI E, CHIBA H. Mar. Technol. Soc. J., 2015, 49(3):88-101.

    92. [92]

      KANA T M, SULLIVAN M B, CORNWELL J C, GROSZKOWSKI K M. Limnol. Oceanogr., 1998, 43(2):334-339.

    93. [93]

      LLOYD D. FEMS Microbiol. Lett., 1986, 38(1):11-17.

    94. [94]

      TSAMBA L, CORREC O, LE CLOIREC P, CIMETIERE N. Rapid Commun. Mass Spectrom., 2019, 33(7):710-718.

    95. [95]

      KIM I, HAHM D, PARK K, LEE Y, CHOI J O, ZHANG M, CHEN L, KIM H C, LEE S. Sci. Total Environ., 2017, 584-585:154-163.

    96. [96]

      CHATTON E, LABASQUE T, DE LA BERNARDIE J, GUIHENEUF N, BOUR O, AQUILINA L. Environ. Sci. Technol., 2017, 51(2):846-854.

    97. [97]

      BRKIC B, GIANNOUKOS S, TAYLOR S, LEE D F. Anal. Methods, 2018, 10(48):5827-5833.

    98. [98]

      VISSER A, SINGLETON M J, HILLEGONDS D J, VELSKO C A, MORAN J E, ESSER B K. Rapid Commun. Mass Spectrom., 2013, 27(21):2472-2482.

    99. [99]

      MCMUTRTRY G M, WILTSHIRE J C, BOSSUYT A. IEEE Oceans 2005 Europe, 2005, 1-2:395-400.

    100. [100]

      GENTZ T, DAMM E, JENS S V D, MAU S, MCGINNIS D F, SCHLUTER M. Cont. Shelf Res., 2014, 72:107-118.

    101. [101]

      MCMURTRY G, KOLOTYRKINA I, BRUCKER G, RATHBONE J. MTS/IEEE Oceans, 2011:1-4.

    102. [102]

      PORCELLI T, SIVIERO F, BONGIORNO G A, MICHELATO P, PAGANI C. Vacuum, 2016, 123:23-28.

    103. [103]

      SHORT R, TOLER S, KIBELKA G, RUEDAROA D, BELL R, BYRNE R. TrAC-Trends Anal. Chem., 2006, 25(7):637-646.

    104. [104]

      CAMILLI R, DURYEA A N. Environ. Sci. Technol., 2009, 43(13):5014-5021.

    105. [105]

      CREASER C S, LAMARCA D G, DOS S L M, NEW A P, JAMES P A. Analyst, 2003, 128(9):1150-1156.

    106. [106]

      JANFELT C, GRAESBOLL R, LAURITSEN F R. Int. J. Mass Spectrom., 2008, 276(1):17-23.

    107. [107]

      BELL R J, SHORT R T, BYRNE R H. Limnol. Oceanogr.:Methods, 2011, 9(4):164-175.

    108. [108]

      FUJITA H. Fortschr. Hochpolym.-Forsch., 1961, 3(1):1-47.

    109. [109]

      KLOPFFER M H, FLACONNECHE B. Oil Gas Sci. Technol., 2006, 56(3):223-244.

    110. [110]

      LIPNIZKI F, TRAGARDH G. Sep. Purif. Rev., 2001, 30(1):49-125.

    111. [111]

      HAMME R, EMERSON S. Deep Sea Res., Part I, 2004, 51(11):1517-1528.

    112. [112]

    113. [113]

      LI X, XIA L, YAN X. Biol. Fert. Soils, 2014, 50(6):891-900.

    114. [114]

      SHI W, LU X, ZHANG J, ZHAO J, YANG L, YU Q, WANG X. Polymers, 2019, 11(3):567.

    115. [115]

      WU C, LIU W, JIANG J, WANG Y, HOU K, LI H. Talanta, 2019, 192:46-51.

  • 加载中
    1. [1]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    2. [2]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    5. [5]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    6. [6]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    10. [10]

      Linlin Guo Jinjun Zhang Chengpeng Miao Bojing Liu Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001

    11. [11]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    12. [12]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    13. [13]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    14. [14]

      Yifeng Xu Zeying Wu Guiqin Shang Linlin Ding Fuyan Liu Huan Zhang Fuhua Jiang . Teaching Reform and Practice of Instrumental Analysis and Experiment Course under the Background of Deep Integration of Industry and Education. University Chemistry, 2025, 40(3): 285-290. doi: 10.12461/PKU.DXHX202408084

    15. [15]

      Pingping Zhang Dong Xiao Shiyu Zhou Chuanqiu Tang . Research and Innovative Practice on the Reform of Instrument Analysis Experimental Teaching System for Talent Cultivation in Modern Industry. University Chemistry, 2025, 40(4): 232-238. doi: 10.12461/PKU.DXHX202405179

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

Metrics
  • PDF Downloads(12)
  • Abstract views(656)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return