Citation: LIU Hui,  LIU Meng-Meng,  YANG Yuan-Jie,  LEI Yun,  LIU Ai-Lin. Study on Electroosmotic Flow of 3D Print Based Microfluidic Electrophoresis Chip[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1937-1944. doi: 10.19756/j.issn.0253-3820.210526 shu

Study on Electroosmotic Flow of 3D Print Based Microfluidic Electrophoresis Chip

  • Corresponding author: LIU Ai-Lin, ailinliu@fjmu.edu.cn
  • Received Date: 26 May 2021
    Revised Date: 10 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.82072379), the Guiding Project of Science and Technology Plan of Fujian Province, China (No.2019Y0012) and Mid-Aged and Young Teachers Education Research Project of Fujian Province, China (No.JAT200147).

  • Two different types of 3D printers were employed for exploring the electroosmotic performance of microfluidic electrophoresis chip:one was Stereo lithography appearance (SLA) type using resin as material for design and preparation of four different kinds of micro-channels, i.e. regular triangle, square, 3/4 regular icosagon and 3/4 circle; the other was Fused deposition modeling (FDM) type using polymer filament as material for design and preparation of square channel. The influence of pH value of buffer solution, microchannel cross-section shape and types of 3D printers & craftsmanship of fabrication were investigated by current monitoring method. The results showed that the electroosmotic mobility of microchannel was negatively correlated with the pH value of buffer solution in the SLA 3D printed electrophoresis chip, whose surface carried positive charge. Among the four different microchannels, the square one had the largest μEOF value. As for the FDM 3D printed electrophoresis chip, it had opposite linear relation between EOF mobility and pH value, demonstrating its surface carried negative charge, but with better linearity and lower electroosmotic mobility. SLA type had multiple production potential but high viscosity resin, which was difficult to remove from microchannels, made the process complex and resulted in the final chip lack of fabrication stability. FDM type was advantageous in fabrication stability, but the diversity of microchannels' shape was limited. This study developed a new method for the fabrication of microchannels and explored the electroosmotic performance of them, which was expected to provide scientific theories for 3D printed microfluidic electrophoresis chip as well as its application in electrophoretic ananlysis.
  • 加载中
    1. [1]

      OLEKSANDROV S, AMAN A, LIM W, KIM Y, BAE N H, LEE K G, LEE S J, PARK S. Electrophoresis, 2018, 39(3):456-461.

    2. [2]

      WU X, MENG Q, ZHANG Q, FAN L, CAO C. Sens. Actuators, B, 2020, 309:127773.

    3. [3]

      NGUYEN V D, NGUYEN H V, BUI K H, SEO T S. Sens. Actuators, B, 2019, 301:127108.

    4. [4]

      WANG Y, WANG J, WU X, JIANG Z, WANG W. Electrophoresis, 2019, 40(6):969-978.

    5. [5]

      MAJARIKAR V, TAKEHARA H, ICHIKI T. Microfluid. Nanofluid., 2018, 22(10):110-116.

    6. [6]

      SÁZELOVÁ P, KASICKA V, KOVAL D, PRUSÍK Z, FANALI S, ATURKIZ. Electrophoresis, 2007, 28(5):756-766.

    7. [7]

      LI J, PENG R, LI D. Anal. Chim. Acta, 2019, 1059:68-79.

    8. [8]

      DUBEY K, GUPTA A, BAHGA S S. Electrophoresis, 2019, 40(5):730-739.

    9. [9]

      WANG C Y, CHANG C C. Electrophoresis, 2007, 28(18):3296-3301.

    10. [10]

      QI C, NG C O. Eur. J. Mech. B, Fluid., 2015, 52:160-168.

    11. [11]

      MAGNINI M, MATAR O K. Int. J. Heat Mass Transfer, 2020, 150:119322.

    12. [12]

      ZHOU L, FU J, HE Y. Adv. Funct. Mater., 2020, 30(28):2000187

    13. [13]

      CASTIAUX A D, CURRENS E R, MARTIN R S. Analyst, 2020, 145(4):3274-3282.

    14. [14]

      CHEN J, LIU C Y, WANG X, SWEET E, LIN L. Biosens. Bioelectron., 2020, 150:111900.

    15. [15]

      BEAUCHAMP M J, NIELSEN A V, GONG H, NORDIN G P, WOOLLEY A T. Anal. Chem., 2019, 91(11):7418-7425.

    16. [16]

      ANCIAUX S K, GEIGER M, BOWSER M T. Anal. Chem., 2016, 88(15):7675-7682.

    17. [17]

      WALCZAK R, ADAMSKI K, KUBICKI W. Sens. Actuators, B, 2018, 261:474-480.

    18. [18]

      RAOUFI M A, RAZAVI B S, NIAZMAND H, ROUHI O, ASADNIA M, RAZMJOU A, EBRAHIMI W M. Soft Matter, 2020, 16(10):2448-2459.

    19. [19]

      CARRELL C S, MCCORD C P, WYDALLIS R M, HENRY C S. Anal. Chim. Acta, 2020, 1124:78-84.

    20. [20]

      HUANG X, GORDON M J, ZARE R N. Anal. Chem., 1988, 60(17):1837-1838.

    21. [21]

      PARK J, YE Q, TOPP E M, MISRA A, KIEWEG S L, SPENCER P. J. Biomed. Mater. Res., Part A, 2010, 93(4):1245-1251.

    22. [22]

      YEO H, KHAN A. J. Am. Chem. Soc., 2020, 142(7):3479-3488.

    23. [23]

      DÖPKE M F, HARTKAMP R. J. Chem. Phys., 2021, 154(9):094701.

    24. [24]

      CHANG Y W, CHANG C C. Electrophoresis, 2010, 28(18):3296-3301.

    25. [25]

      ZHANG J, LIU J, WANG C, CHEN F, WANG X, LIN K. Bioact. Mater., 2020, 5(1):9-16.

    26. [26]

      AHMED W, ALNAJJAR F, ZANELDIN E, AL-MARZOUQI A H, KHALID S. Materials, 2020, 13(18):4065-4088.

  • 加载中
    1. [1]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    2. [2]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    3. [3]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    16. [16]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    17. [17]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    18. [18]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(20)
  • Abstract views(896)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return