Citation: LUO Xin,  WANG Zhen-Ju,  XIE Tang-Tang,  DING You-Chao,  TANG Zhi-Xu,  YE Xi-Wen,  NIU Zeng-Yuan. Non-Target Screening and Identification of Fluorescent Whitening Agents in Children Masks Based on High Resolution Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1926-1936. doi: 10.19756/j.issn.0253-3820.210525 shu

Non-Target Screening and Identification of Fluorescent Whitening Agents in Children Masks Based on High Resolution Mass Spectrometry

  • Corresponding author: LUO Xin,  NIU Zeng-Yuan, 
  • Received Date: 26 May 2021
    Revised Date: 10 September 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2016YFF0203702) and Research Project of General Administration of Customs, P.R. China (No.2019HK070).

  • Fluorescent whitening agents (FWAs) are a class of fluorescent dyes with whitening effects, and are widely used in textiles, paper, detergents, cosmetics, plastic toys, food contact materials and other products. In view of their harm to people and the environment, FWAs are limited by relevant regulations at home and abroad. In this work, based on high performance liquid chromatography-high resolution mass spectrometry technique, a method was established for non-targeted screening and identification of 31 kinds of FWAs, which belonged to 7 different classes, in children's masks. And the method was successfully applied to the analysis of real masks samples from 18 different brands. Using methanol:water (3:1, V/V) solution as extraction solvent, the FWAs in children's masks were extracted by ultrasonic assisted extraction. For chromatographic separation, 5 mmol/L ammonium acetate and methanol were used as the mobile phase and the gradient elution was optimized. A Full mass scan and data-dependent MS/MS mode (Full MS/dd-MS2) was used for high-resolution mass spectrometry detection. Qualitative confirmation of compounds was based on multi-dimensional information, such as exact mass, parent ion isotope abundance ratio, predicted retention time and predicted fragment ion. The fragment structures of 4 kinds of FWAs detected in children's masks were firstly deduced by Xcalibur, Mass Frontier and ACD/MS Fragmenter software, and then compared with literature reports. Finally, the accurate qualitative and quantitative analyses were carried out by the reference standard materials of FWAs, and the methodological verification of the non-targeting method was carried out by using representative compounds. The established non-target screening method could achieve rapid analysis of FWAs with high throughput, without purchasing all reference standards and complicated method development. The method could satisfy both the regulations requirements and identification of non-target compounds. Especially during the epidemic period, it could provide an effective technical support for the quality control of masks and the protection of children's health.
  • 加载中
    1. [1]

      WU Y L, XIAN Y P, GUO X D, CHEN L, ZHAO X, WANG B, WANG L. Food Chem., 2018, 243:162-167.

    2. [2]

      WU Z J, XU Y S, LI M C, GUO X, XIAN Y, DONG H. Anal. Methods, 2016, 8(5):1052-1059.

    3. [3]

      GUO X D, XIAN Y P, LUO H Y, WU Y, LUO D, CHEN Y, LU Y, XU D. Anal. Methods, 2013, 5(21):6080-6093.

    4. [4]

    5. [5]

    6. [6]

      2002/72/EC. Relating to Plastic Materials and Articles Intended to Come into Contact with Foodstuffs.

    7. [7]

      (EU) No 10/2011. On Plastic Materials and Articles Intended to Come into Contact with Food.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

      LOPES J F A, TSOCHATZIS E D, EMONS H, HOEKSTRA E. Food Addit. Contam., Part A, 2018, 35(7):1438-1446.

    25. [25]

    26. [26]

      WU Z J, XU Y S, LI M C, GUO X, XIAN Y, DONG H. RSC Adv., 2016, 6(22):17941-17946.

    27. [27]

    28. [28]

    29. [29]

    30. [30]

      KIM J S, KIM D H, KIM K. Bull. Korean Chem. Soc., 2012, 33(12):3971-3976.

    31. [31]

    32. [32]

      JIANG D G, CHEN L S, FU W S, QIU H. J. Sep. Sci., 2015, 38(4):605-611.

    33. [33]

    34. [34]

    35. [35]

      LUO X, ZHANG L, NIU Z Y, YE X W, TANG Z X, XIA S W. J. Chromatogr. A, 2017, 1530:80-89.

    36. [36]

    37. [37]

      (EU) 2021/808. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances used in Food-Producing Animals and on the Interpretation of Results as well as on the Methods to be used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC.

    38. [38]

      SCHYMANSKI E L, JEON J, GULDE R, FENNER K, RUFF M, SINGER H P, HOLLENDER J. Environ. Sci. Technol., 2014, 48(4):2097-2098.

    39. [39]

      SANTE/12682/2019. Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed.

    40. [40]

      CABALLERO-CASERO N, BELOVA L, VERVLIET P, ANTIGNAC J P, CASTAÑO A, DEBRAUWER L, LÓPEZ M E, HUBER C, KLANOVA J, KRAUSS M, LOMMEN A, MOL H G J, OBERACHER H, PARDO O, PRICE E J, REINSTADLER V, VITALE C M, VAN NUIJS A L N, COVACI A. TrAC-Trends Anal. Chem., 2021, 136:116201.

    41. [41]

      SCHULZE B, JEON Y, KASERZON S, HEFFERNAN A L, DEWAPRIYA P, O'BRIEN J, GOMEZ RAMOS M J, GHORBANI GORJI S, MUELLER J F, THOMAS K V, SAMANIPOUR S. TrAC-Trends Anal. Chem., 2020, 133:116063.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    11. [11]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    12. [12]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(16)
  • Abstract views(817)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return