Citation: OU Pan-Pan,  WEI Fu-Cun,  WU Ye-Yu,  TANG Xiao-Qiang,  CHEN Zhi-Fan,  WU Jia-Wen,  LIN Yu,  TAN Xue-Cai. A Photoelectrochemical Sensor for Sensitive Detection of Hg2+ Based on M-TiO2-CdSe Quantum Dots Composite Material[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1897-1907. doi: 10.19756/j.issn.0253-3820.210513 shu

A Photoelectrochemical Sensor for Sensitive Detection of Hg2+ Based on M-TiO2-CdSe Quantum Dots Composite Material

  • Corresponding author: TAN Xue-Cai, gxunxctan@126.com
  • Received Date: 19 May 2021
    Revised Date: 26 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21365004), the Key Research and Development Project of Guangxi (No.AB18126048), the Guangxi Innovation-driven Development Special Fund Project (No.AA18118013-10), the Specific Research Project of Guangxi for Research Bases and Talents (No.AD18126005), Young and Middleaged Teachers Basic Ability Promotion Project by Guangxi Education Department (No.2019KY0162), the Innovation Project of Guangxi University for Nationalities Graduate Education (No.gxun-chxps202077).

  • A novel and simple photoelectrochemical (PEC) sensor for ultrasensitive detection of mercury ion (Hg2+) was fabricated based on metal organic framework-derived porous titanium dioxide-cadmium selenide quantum dots (M-TiO2-CdSe QDs) composites. The morphology and structure of different materials were characterized by field emission scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The performance of the sensor was studied by current time method (i-t) and electrochemical impedance spectroscopy technology (EIS). The results showed that the prepared M-TiO2 not only retained the original morphology and structure of MIL-125(Ti), but also exhibited more abundant pore structure and good PEC properties. Comparing with M-TiO2, the as-prepared M-TiO2-CdSe QDs nanocomposite exhibited excellent PEC performances including about 2-fold enhancement of photocurrent intensity, which were ascribed to the large surface of M-TiO2 and the introduction of CdSe QDs. Based on the selective inhibitory effect of Hg2+ on the photocurrent intensity of the M-TiO2-CdSe QDs PEC system, a novel PEC sensor for Hg2+ concentration determination was constructed, with a wide linear response range of 0.005-5 nmol/L and a detection limit of 4.2 pmol/L (S/N=3). The detection method was used for analysis of Hg2+ in real water samples with the spiked recoveries of 96%-110%, and the possible detection mechanism of the M-TiO2-CdSe QDs PEC system was also discussed.
  • 加载中
    1. [1]

      WEI H, WANG Z D, YANG L M, TIAN S L, HOU C J, LU Y. Analyst, 2010, 135(6):1406-1410.

    2. [2]

      CHEN T, ZHU W P, XU Y F, ZHANG S Y, ZHANG X J, QIAN X H. Dalton Trans., 2010, 39(5):1316-1320.

    3. [3]

      YUAN H Z, JI W, CHU S W, LIU Q, QIAN S Y, GUANG J Y, WANG J B, HAN X Y, MASSON J F, PENG W. ACS Sens., 2019, 4(3):704-710.

    4. [4]

      XIONG E H, WU L, ZHOU J W, YU P, ZHANG X H, CHEN J H. Anal. Chim. Acta, 2015, 853(1):242-248.

    5. [5]

    6. [6]

      MA Z Y, XU F, QIN Y, ZHAO W W, XU J J, CHEN H Y. Anal. Chem., 2016, 88(8):4183-4187.

    7. [7]

      LIU L X, FAN G C, ZHANG J R, ZHU J J. Anal. Chim. Acta, 2018, 1027(16):33-40.

    8. [8]

      ZHENG H L, YI H, DAI H, FANG D D, HONG Z S, LIN D M, ZHENG X Q, LIN Y Y. Sens. Actuators, B, 2018, 269(15):27-35.

    9. [9]

    10. [10]

      LUO Y N, TAN X C, YOUNG D J, CHEN Q Y, HUANG Y H, FENG D F, AI C H, MI Y. Anal. Chim. Acta, 2020, 1115(8):33-40.

    11. [11]

      TANG X H, LI D Y. J. Phys. Chem. C, 2008, 112(14):5405-5409.

    12. [12]

      CHAN W C W, MAXWELL D J, GAO X H, BAILEY R E, HAN M Y, NIE S M. Curr. Opin. Biotechnol., 2002, 13(1):40-46.

    13. [13]

      YANG G, CHEN D M, DING H, FENG J J, ZHANG J Z, ZHU Y F, HAMID S, BAHNEMANN D W. Appl. Catal., B, 2017, 219(15):611-618.

    14. [14]

      WANG Z Q, LI X, XU H, YANG Y, CUI Y J, PAN H G, WANG Z Y, CHEN B L, QIAN G D. J. Mater. Chem. A, 2014, 2(31):12571-12575.

    15. [15]

      LIU L P, PENG Q, LI Y D. Inorg. Chem., 2008, 47(11):5022-5028.

    16. [16]

      ZHONG Y Q, CHEN W W, YU S, XIE Z H, WEI S Q, ZHOU Y. ACS Omega, 2018, 3(12):17762-17769.

    17. [17]

      JIN H B, PRASHANT V K. Adv. Funct. Mater., 2010, 20(12):1970-1976.

    18. [18]

      GRACIA F, HOLGADO J P, CABALLERO A, GONZALEZ-ELIPE A R. J. Phys. Chem. B, 2004, 108(45):17466-17476.

    19. [19]

      ZHEN C, WU T T, MOHAMMAD W K, IQBAL I, LIU G, CHENG H M. Chin. J. Catal., 2015, 36(12):2171-2177.

    20. [20]

      YU J C, YU J G, TANG H Y, ZHANG L Z. J. Mater. Chem., 2002, 12(1):81-85.

    21. [21]

      YU H J, ZHAO Y F, ZHOU C, SHANG L, PENG Y, CAO Y H, WU L Z, TUNG C H, ZHANG T R. J. Mater. Chem. A, 2014, 2(10):3344-3351.

    22. [22]

      GE L, ZUO F, LIU J K, MA Q, WANG C, SUN D Z, LUDWIG B, FENG P Y. J. Phys. Chem. C, 2012, 116(25):13708-13714.

    23. [23]

      LEONOR D L C, KOEN L, ROBERTO O, JOSE M G, CONCEPCION A, BAETRIZ H J. J. Phys. Chem. C, 2014, 118(9):4998-5004.

    24. [24]

      XU D W, YANG M K, LIU Y, ZHU R, LV X D, ZHANG C, LIU B. J. Alloys Compd., 2020, 822(5):153685.

    25. [25]

      GAO P C, MA H M, YAN T, WU D, REN X, YANG J J, DU B, WEI Q. Dalton Trans., 2015, 44(2):773-781.

    26. [26]

      LI H B, ZHANG Y, WANG X Q, GAO Z N. Microchim. Acta, 2008, 160(1):119-123.

    27. [27]

      LI J, LU L P, KANG T F, CHENG S Y. Biosens. Bioelectron., 2016, 77(15):740-745.

    28. [28]

      JIN H L, ZHANG M L, WEI M, CHENG J H. Microchim. Acta, 2019, 186(4):264.

    29. [29]

      YUAN H Z, JI W, CHU S W, LIU Q, QIAN S Y, GUANG J Y, WANG J B, HAN X Y, JEAN-FRANCOIS M, PENG W. ACS Sens., 2019, 4(3):704-710.

    30. [30]

      LIAN Q, LIU H, ZHENG X F, LI X M, ZHANG F J, GAO J. Appl. Surf. Sci., 2019, 483(31):551-561.

    31. [31]

      ZHANG Y, XIAO J Y, ZHU Y, TIAN L J, WANG W K, ZHU T T, LI W W, YU H Q. Anal. Chem., 2020, 92(5):3990-3997.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(9)
  • Abstract views(721)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return