Citation: ZHANG Ben-Hua,  LIANG Ting-Xi-Zi,  HE Zhi-Mei,  JIANG Yao-Wen,  HUANG Shan,  MIN Qian-Hao. Zinc Peroxide-Mesoporous Silica Core-Shell Dual-Enzyme Nanoreactors for Gene-Chemodynamic Synergistic Therapy of Cancer[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1855-1863. doi: 10.19756/j.issn.0253-3820.210506 shu

Zinc Peroxide-Mesoporous Silica Core-Shell Dual-Enzyme Nanoreactors for Gene-Chemodynamic Synergistic Therapy of Cancer

  • Corresponding author: MIN Qian-Hao, minqianhao@nju.edu.cn
  • Received Date: 12 May 2021
    Revised Date: 11 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21974062, 92053102).

  • Stimuli-responsiveness of nanoreactors offers a good opportunity for designing site-specific therapeutic agents to maximize the therapeutic efficacy and minimize the side effect. In this work, a dual-enzyme reactor with zinc peroxide-mesoporous silica core-shell structure was constructed for pH-responsive gene therapy and chemodynamic therapy of cancer. The ZnO2@FcDMSN@DNAzyme/GOx (ZFDG) nanoreactors were fabricated by modifying ferrocene (Fc) on the surface of mesoporous silica-coated zinc peroxide nanoparticles, followed by electrostatic adsorption of DNAzyme and glucose oxidase (GOx) in the outer pore structures. After internalization into tumor cells, intracellular acidic environment spurred the release of Zn2+ to activate DNAzyme, leading to the cleavage of the target mRNA for downregulation of early growth factor-1 (EGR-1) and consequent inhibition of tumor cell growth. In addition, GOx could transform abundant intracellular glucose into gluconic acid and hydrogen peroxide (H2O2), which increased the acidity in cells and provided massive substrates for Fenton reaction. The results showed that the presented ZFDG nanoreactors could be degraded under acidic environment and produced Zn2+, which further triggered gene therapy to reduce cell viability down to 70%. Upon combination with enhanced chemodynamic therapy, the cell survival rate could be further lowered to 20% when the concentration of nanoreactor was 50 μg/mL. Therefore, the collaboration of precisely triggered gene therapy and enhanced chemodynamic therapy synchronously improved the treatment efficiency and provided a potential tool for effective cancer therapy.
  • 加载中
    1. [1]

      ROSENTHAL S A, HU C, SARTOR O, GOMELLA L G, AMIN M B, PURDY J, MICHALSKI J M, GARZOTTO M G, PERVEZ N, BALOGH A G, RODRIGUES G B, SOUHAMI L, REAUME M N, WILLIAMS S G, HANNAN R, HORWITZ E M, RABEN A, PETERS C A, FENG F Y, SHIPLEY W U, SANDLER H M. J. Clin. Oncol., 2019, 37(14):1159-1167.

    2. [2]

      HECK M M, TAUBER R, CHWAIGER S S, RETZ M, ALESSANDRIA C D, MAURER T, AFITA A G, WESTER H J, GSCHWEND J E, WWBER W A, SCHWAIGER M, KNORR K, EIBER M. Eur. Urol., 2019, 75(6):920-926.

    3. [3]

      TOLANEY S M, WARDLEY A M, ZAMBELLI S, HILTON J F, TROSO-SANDOVAL T A, RICCI F, IM S A, KIM S B, JOHNSTON S R D, CHAN A, GOEL S, CATRON K, CHAPMAN S C, PRICE G L, YANG Z, GAINFORD M C, ANDRE F. Lancet Oncol., 2020, 21(6):763-775.

    4. [4]

      MACEWAN S R, CHIKOTI A. Angew. Chem., Int. Ed., 2017, 56(24):6712-6733.

    5. [5]

      DING Y, WAN J, ZHANG Z, WANG F, GUO J, WANG C. ACS Appl. Mater. Interfaces, 2018, 10(5):4439-4449.

    6. [6]

      RANJI-BURACHALO O, GURR P A, DUNSTAN D E, QIAO G. ACS Nano, 2018, 12(12):11819-11837.

    7. [7]

      SUN B, LI H, LI X, LIU X, ZHANG C, XU H, ZHAN X S. Ind. Eng. Chem. Res., 2018, 57(42):14011-14021.

    8. [8]

      BUTTERFIELD J S S, HEGE K M, HERZOG R W, KACZMAREK R. Mol. Ther., 2020, 28(4):997-1015.

    9. [9]

      FORD K, HANLEY C J, MELLONE M, SZYNDRALEWIEZ C, HEITZ F, WIESEL P, WOOD O, MACHADO M, LOPEZ M A, GANESAN A P, WANG C, CHAKRAVARTHY A, FENTON T R, KING E V, VIJAYANAND P, OTTENSMEIER C H, AL-SHAMKHANI A, SAVELYEVA N, THOMAS G J. Cancer Res., 2020, 80(9):1846-1860.

    10. [10]

      FAN H, ZHAO Z, YAN G, ZHANG X, YANG C, MENG H, CHEN Z, LIU H, TAN W. Angew. Chem., Int. Ed., 2015, 54(16):4801-4805.

    11. [11]

      YU L, CHEN Y, LIN H, GAO S, CHEN H, SHI J. Small, 2018, 14(35):1613-6810.

    12. [12]

      WANG H, CHEN Y, WANG H, LIU X, ZHOU X, WANG F. Angew. Chem., Int. Ed., 2019, 58:7380-7384.

    13. [13]

      ELAHY M, DASS C R. Chem. Biol. Drug Des., 2011, 78(6):909-912.

    14. [14]

      FAHMY R G, WALDMAN A, ZHANG G, MITCHELL A, TEDLA N, CAI H, GECZY C R, CHESTERMAN C N, PERRY M, KHACHIGIANL M. Nat. Biotechnol., 2006, 24(7):856-863.

    15. [15]

      FAN H, ZHANG X, LU Y. Sci. China Chem., 2017, 60(5):591-601.

    16. [16]

      ZHOU W, DING J, LIU J. Theranostics, 2017, 7(4):1010-1025.

    17. [17]

      KHACHIGIAN L M. Cancer Res., 2019, 79(5):879-888.

    18. [18]

      LIN L, WANG J, SONG J, LIU Y, ZHU G, DAI Y, SHEN Z, TIAN R, SONG J, WANG Z, TANG W, YU G, ZHOU Z, YANG Z, HUANG T, NIU G, YANG H H, CHEN Z Y, CHEN X. Theranostics, 2019, 9(24):7200-7209.

    19. [19]

      ZHENG F, WANG C, MENG T, ZHANG Y, ZHANG P, SHEN Q, ZHANG Y, ZHANG J, LI J, MIN Q, CHEN J, ZHU J. ACS Nano, 2019, 13(11):12577-12590.

    20. [20]

      YANG Y, LU Y, ABBRARAJU P L, AZIMI I, LEI C, TANG J, JAMBHRUNKAR M, FU J, ZHANG M, LIU Y, LIU C, YU C. Adv. Funct. Mater., 2018, 28(28):1800706.

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(9)
  • Abstract views(953)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return