Citation: QIN Ying-Kai,  LI Shuang,  HONG Yang,  WANG Zhi-Guang,  JI Guang-Na,  CHEN Rui-Peng,  ZHAO Xu-Dong,  WANG Yu,  REN Shu-Yue,  HAN Dian-Peng,  PENG Yuan,  ZHOU Huan-Ying,  GAO Zhi-Xian,  HAN Tie. Research Process of Synthesis, Functionalization and Application of Upconversion Nanoparticles in Food Safety Detection[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1955-1969. doi: 10.19756/j.issn.0253-3820.210487 shu

Research Process of Synthesis, Functionalization and Application of Upconversion Nanoparticles in Food Safety Detection

  • Corresponding author: GAO Zhi-Xian,  HAN Tie, 
  • Received Date: 8 May 2021
    Revised Date: 9 September 2021

    Fund Project: Supported by the National Key Research and Development Program of China(No.2018YFC1603500).

  • Upconversion nanoparticles (UCNPs) can convert low-energy excitation into high-energy emission via multiphoton absorption processes. UCNPs have some unique photophysical properties including large anti-Stokes shift, strong penetration into biological tissues, resistance to photobleaching, low background fluorescence, great chemical stability and low toxicity, therefore, they draw great attention and provide a variety of possibilities for sensing detection, bioimaging, and bioanalysis, and promoting the development of fluorescently labeled probes. In this review, the synthesis methods and surface functionalization strategies of UCNPs were summarized, also the recent progress of UCNPs on food safety detection was reviewed. Finally, the challenges faced by UCNPs and the opportunities for future development were discussed.
  • 加载中
    1. [1]

      YANG X Y, WANG D Y, SHI Y H, ZOU J H, ZHAO Q S, ZHANG Q, HUANG W, SHAO J J, XIE X J,DONG X C. ACS Appl. Mater. Interfaces, 2018, 10(15):12431-12440.

    2. [2]

      WEIBEI S. Phys. Rev. Lett., 1959, 2:83-84.

    3. [3]

      AUZEL F. Proc. IEEE, 1973, 61:758-786.

    4. [4]

      HAASE M, SCHAFER H. Angew. Chem., Int. Ed., 2011, 50(26):5808-5829.

    5. [5]

      ZHANG F, SHI Q H, ZHANG Y C, SHI Y F, DING K L, ZHAO D Y, STUCKY G D. Adv. Mater., 2011, 23:3775-3779.

    6. [6]

      CHIVIAN J S, CASE W E, EDEN D D. Appl. Phys. Lett., 1979, 35(2):124.

    7. [7]

      CHANG Y R, LEE H Y, CHEN K, CHANG C C, TSAI D S, FU C C, LIM T S, TZENG Y K, FANG C Y, HAN C C, CHANG H C, FANN W. Nat. Nanotechnol., 2008, 3:284-288.

    8. [8]

      YANG D M, DAI Y L, MA P A, KANG X J, CHENG Z Y, LI C X, LIN J. Chem.-Eur. J., 2013, 19(8):2685-2694.

    9. [9]

      LAIHINEN T, LASTUSAARI M, PIHLGREN L, RODRIGUES L C V, HOLSA J. J. Therm. Anal. Calorim., 2015, 121(1):37-43.

    10. [10]

      CHANG H J, XIE J, ZHAO B Z, LIU B T, XU S L, REN N, XIE X J, HUANG L, HUANG W. Nanomaterials, 2015, 5(1):1-25.

    11. [11]

      RADUNZ S, SCHAVKAN A, WAHL S, WUERTH C, TSCHICHE H, KRURNREY M, RESCH-GENGER U. J. Phys. Chem. C, 2018, 122(50):28958-28967.

    12. [12]

      SKRIPKA A, MARIN R, BENAYAS A, CANTON P, HEMMER E, VETRONE F. Phys. Chem. Chem. Phys, 2017, 7(70):44531-44536.

    13. [13]

      LI Y, DONG Y, AIDILIBIKE T, LIU X, GUO J, QIN W. RSC Adv., 2017, 7(70):44531-44536.

    14. [14]

      DONG J, ZHANG J, HAN Q, ZHAO X, YAN X, LIU J, GE H, GAO W. J. Lumin., 2019, 207:361-368.

    15. [15]

      MAI H X, ZHANG Y W, SUN L D, YAN C H. J. Phys. Chem. C, 2007, 111(37):13730-13739.

    16. [16]

      PANIKAR S S, RAMIIREZ-GARCIA G, VALLEJO-CARDONA A A, BANU N, PATRON-SOBERANO O A, CIALLA-MAY D, CAMACHO-VILLEGAS T A, ROSA E D L. Nanoscale, 2019, 11(43):20598-20613.

    17. [17]

      SUN L L, WANG T, SUN Y Z, LI Z X, SONG H N, ZHANG B, ZHOU G J, ZHOU H F, HU J F. Talanta, 2020,207:120294.

    18. [18]

      LI Z Q, ZHANG Y. Nanotechnology, 2008, 19:345606.

    19. [19]

      ZHU J, AGYEKUM A A, KUTSANEDZIE F Y H, LI H, CHEN Q, OUYANG Q, JIANG H. LWT-Food Sci. Technol., 2018, 97:760-769.

    20. [20]

      WANG X, ZHUANG J, PENG Q, LI Y D. Nature, 2005, 437(7055):121-124.

    21. [21]

      FENG Y, CHEN H D, MA L, SHAO B Q, ZHAO S, WANG Z X, YOU H P. ACS Appl. Mater. Interfaces, 2017, 9(17):15096-15102.

    22. [22]

      KACZOROWSKA N, SZCZESZAK A, LIS S. J. Lumin., 2018, 200:59-65.

    23. [23]

      SASIDHARAN S L, NIAGARA M I, LI Z Q, HUANG K, SOO K C, ZHANG Y. ACS Nano, 2015, 9(1):191-205.

    24. [24]

      RONG J M, LI P C, GE Y K, CHEN H L, WU J, ZHANG R W, LAO J, LOU D W, ZHANG Y X. Colloids Surf., B, 2020, 186:110674.

    25. [25]

      CHHETRI B P, KARMAKAR A, GHOSH A. Part. Part. Syst. Charact., 2019, 36(8):1900153.

    26. [26]

      HAN S Y, QIN X, AN Z F, ZHU Y H, LIANG L L, HAN Y, HUANG W, LIU X G. Nat. Commun., 2016, 7:13059.

    27. [27]

      BOGDAN N, RODRIGUEZ E M, SANZ-RODRIGUEZ F, DE LA CRUZ M C I, JUARRANZ A, JAQUE D, SOLE J G, CAPOBIANCO J A. Nanoscale, 2012, 4(12):3647-3650.

    28. [28]

      XIE X H, SONG J L, HU L Y, ZHANG S Y, WANG Y T, ZHAO Y L, LU Q. Int. J. Nanomed., 2018, 13:7633-7646.

    29. [29]

      WANG F F, ZHANG C L, QU X T, CHENG S S, XIAN Y Z. Biosens. Bioelectron., 2019, 126:96-101.

    30. [30]

      YANG H, CHEN X N, WU J S, WANG R Y, YANG H P. Sens. Actuators, B, 2019, 290:656-665.

    31. [31]

      XU S, XU S H, ZHU Y S, XU W, ZHOU P W, ZHOU C Y, DONG B, SONG H W. Nanoscale, 2014, 6(21):12573-12579.

    32. [32]

      LUO Z B, QI Q G, ZHANG L J, LUO Z B, QI Q A, ZHANG L J, ZENG R J, SU L S, TANG D P. Anal. Chem., 2019, 91(6):4149-4156.

    33. [33]

      ALONSO-CRISTOBAL P, VILELA P, EI-SAGHEER A, BROWN T, MUSKENS O L, RUBIO-RETAMA J, KANARAS A G. ACS Appl. Mater. Interfaces, 2015, 7(23):12422-12429.

    34. [34]

      GIUST D, LUCIO M I, EL-SAGHEER A H, BROWN T, WILLIAMS L E, MUSKENS O L, KANARAS A G. ACS Nano, 2018, 12(6):6273-6279.

    35. [35]

      GUO Y, ZOU R, SI F, LIANG W, ZHANG T, CHANG Y, QIAO X, ZHAO J. Food Chem., 2021, 335:127609.

    36. [36]

      TANG Y, LIU H, GAO J, LIU X, GAO X, LU X, FAN G G, WANG J, LI J. Talanta, 2018, 181:95-103.

    37. [37]

      CHEN H, PANG X, NI Z, LIU M, ZHANG Y, YAO S. Anal. Chim. Acta, 2020, 1095:146

    38. [38]

      LIU L, ZHANG H, WANG Z, SONG D. Biosens. Bioelectron., 2019, 141:111403.

    39. [39]

      CHAN M H, LAI C Y, CHAN Y C, HSIAO M, CHUNG R J, CHEN X, LIU R S. Nanomedicine, 2019, 14(14):1791-1804.

    40. [40]

      LIU J, LU L, LI A, TANG J, WANG S, XU S, WANG L. Biosens. Bioelectron., 2015, 68:204.

    41. [41]

      YUAN J, CEN Y, KONG X J, WU S, LIU C L, YU R Q, CHU X. ACS Appl. Mater. Interfaces, 2015, 7(19):10548-10555.

    42. [42]

      OUYANG Q, WANG L, AHMAD W, RONG Y, LI H, HU Y, CHEN Q. Food Chem., 2021, 349:129157.

    43. [43]

      XU Z, ZHANG L W, LONG L L, ZHU S H, CHEN M L, DING L, CHENG Y H. Front. Bioeng. Biotechnol., 2020, 8:626269.

    44. [44]

      LIU C, WANG Z, JIA H, LI Z. Chem. Commun., 2011, 47:4661-4663.

    45. [45]

      ZHANG L, YIN S, HOU J, ZHANG W, HUANG H, LI Y, YU C. Food Chem., 2019, 270:415-419.

    46. [46]

      LI J, ZHANG C, YIN M, ZHANG Z, CHEN Y, DENG Q, WANG S. ACS Omega, 2019, 4(14):15947-15955.

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

    56. [56]

      WANG P, LI H, HASSAN M M, GUO Z, ZHANG Z Z, CHEN Q. J. Agric. Food Chem., 2019, 67(14):4071-4079.

    57. [57]

      LIU M, ZHANG L, JIANG S, FU Z F. Microchem. J., 2020, 152:104451.

    58. [58]

      CHEN H, DING Y, YANG Q, BARNYCH B, GONZÁLEZ-SAPIENZA G, HAMMOCK B D, WANG M, HUA X. ACS Appl. Mater. Interfaces, 2019, 11(36):33380-33389.

    59. [59]

    60. [60]

      HLAVACEK A, FARKA Z, HUBNER M, HORNAKOVA V, NEMECEK D, NIESSNER R, SKLADAL P, KNOPP D, GORRIS H H. Anal. Chem., 2016, 88(11):6011-6017.

    61. [61]

      WANG F, HAN Y, WANG S, YE Z, WEI L, XIAO L. Anal. Chem., 2019, 91(18):11856-11863.

    62. [62]

      WU Z, HE D, CUI B. Microchim. Acta, 2018, 185(11):516.

    63. [63]

      ZHAO X, WANG Y, LI J, HUO B, HUANG H, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, GAO Z. Anal. Chim. Acta, 2021, 1160:338450.

    64. [64]

      YU J, GUO T, ZHANG W, LI B, LIU L, HUA R. J. Alloys Compd., 2019, 771:187-194.

    65. [65]

      SI F, ZOU R, JIAO S, QIAO X, GUO Y, ZHU G. Ecotoxicol. Environ. Saf., 2018, 148:862-868.

    66. [66]

      SUN N, DING Y, TAO Z, YOU H, HUA X, WANG M. Food Chem., 2018, 257:289-294.

    67. [67]

      LIU X, REN J, SU L, GAO X, TANG Y, MA T, ZHU L, LI J. Biomol. Spectrosc., 2017, 87:203-208.

    68. [68]

      HU G, SHENG W, LI J, ZHANG Y, WANG J, WANG S. Anal. Chim. Acta, 2017, 982:185-192.

    69. [69]

    70. [70]

      WANG Y, ZHAO X D, ZHANG M, SUN X, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, HAN T, GAO Y, NING B, GAO Z. J. Hazard. Mater., 2021, 406:124703.

    71. [71]

      LIN X, YU Q, YANG W, HE C, ZHOU Y, DUAN N, WU S. Food Chem., 2021, 345:128809.

    72. [72]

      RONG Y, ALI S, OUYANG Q, WANG L, LI H, CHEN Q. J. Food Compos. Anal., 2021, 1016:103929.

    73. [73]

      LI Y, LI Y, ZHANG D, TAN W, SHI J, LI Z, LIU H, YU Y, YANG L, WANG X, GONG Y, ZOU X. LWT-Food Sci. Technol., 2021, 1016:111541.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    6. [6]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    7. [7]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Dongxia Zhang Sijia Hao Jiarui Wang Jiwei Wang Xiaogang Dong Liang Jiao . Construction and Reflection on the Safety Management of Hazardous Chemicals in University Laboratories. University Chemistry, 2024, 39(10): 229-235. doi: 10.12461/PKU.DXHX202403078

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(14)
  • Abstract views(825)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return