Citation: LIU Jin-Zheng,  ZHANG Li-Xue. Progress in Application of Atomic Layer Deposition Technique in Electroanalytical Chemistry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1767-1778. doi: 10.19756/j.issn.0253-3820.210481 shu

Progress in Application of Atomic Layer Deposition Technique in Electroanalytical Chemistry

  • Corresponding author: ZHANG Li-Xue, zhanglx@qdu.edu.cn
  • Received Date: 5 May 2021
    Revised Date: 20 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775078).

  • Electrochemical analysis has been widely used in the field of highly sensitive detection of bioactive molecules and gases, but the controllable preparation of high-performance electrode materials has always been challenging. Atomic layer deposition can realize the precise preparation of thin film materials and nanomaterials through continuous self-restricted semi-reactions, and provides a novel, simple, and precise method for the controllable preparation of high-performance electrode materials for electroanalysis. This paper first summarizes the principles and characteristics of atomic layer deposition, and then focuses on the application progresses of atomic layer deposition in the field of electrochemical detection of biomolecules and gas molecules. In addition, the application perspectives of atomic layer deposition in the field of electroanalytical chemistry are proposed.
  • 加载中
    1. [1]

      CHALKER P R. Surf. Coat Technol., 2016, 291(15):258-263.

    2. [2]

      GEORGE S M. Chem. Rev., 2010, 110(1):111-131.

    3. [3]

      RITALA M, LESKELA M. Handbook of Thin Films:Atomic Layer Deposition. Academic Press, 2002:103-159.

    4. [4]

      MALYGIN A A, DROZD V E, MALKOV A A, SMIRNOV V M. Chem. Vap. Deposition, 2015, 21(10):216-240.

    5. [5]

      PUURUNEN R L. Chem. Vap. Deposition, 2014, 20(10):332-344.

    6. [6]

      SUNTOLA T, ANTSON J. US Patent, 1977, 4(58):430.

    7. [7]

      HAMALAINEN J, RITALA M, LESKELA M. Chem. Mater., 2014, 26(1):786-801.

    8. [8]

      KIM H. J. Vac. Sci. Technol. B., 2003, 21(6):2231-2261.

    9. [9]

      MENGX B, CAOY Q, LIBERA J A, ELAM J W. Chem. Mater., 2017, 29(21):9043-9052.

    10. [10]

      AALTONEN T, RITALA M, TUNG Y L, CHI Y, ARSTILA K, MEINANDER K, LESKELA M. J. Mater. Res., 2004, 19(11):3353-3358.

    11. [11]

      HONG Y, KIM C H, SHIN J, KIM K Y, KIM J S, HWANG C S, LEE J H. Sens. Actuators, B, 2016, 232:653-659.

    12. [12]

      NAKASHIMA Y, OHNO Y, KISHIMOTO S, OKOCHI M, HONDA H, MIZUTANI T. J. Nanosci. Nanotechnol., 2010, 10(6):3805-3809.

    13. [13]

      CHIA C, SHULAKER M M, PROVINE J, JEFFREY S S, HOWE T R. ACS Appl. Mater. Interfaces, 2019, 11(29):26082-26092.

    14. [14]

      SONG G, WANG Y, QI Y, LI W, ZHANG L. Rare Met., 2020, 39(7):784-791.

    15. [15]

      WEBER M, IATSUNSKYI I, COY E, MIELE P, CORNU D, BECHELANY M. Adv. Mater. Interfaces, 2018, 5(16):1800056.

    16. [16]

      SUN F, DUAN Y, YANG Y, CHEN P, DUAN Y, WANG X, YANG D, XUE K. Org. Electron., 2014, 15(10):2546-2552.

    17. [17]

      JUR J S, SWEETIIIJ W, OLDHAM C J, PARSONS G N. Adv. Funct. Mater., 2011, 21(11):1993-2002.

    18. [18]

      WANG T, ZHU H, ZHUO J, ZHU Z, PAPAKONSTANTINOU P, LUBARSKY G, LIN J, LI M. Anal. Chem., 2013, 85(21):10289-10295.

    19. [19]

      BAI J, JIANG X. Anal. Chem., 2013, 85(17):8095-8101.

    20. [20]

      LIU J, BO X, ZHAO Z, GUO L. Biosens. Bioelectron., 2015, 74(15):71-77.

    21. [21]

      ROBERTS J G, VOINOV M A, SCHMIDT A C, SMIRNOVA T I, SOMBERS L A. J. Am. Chem. Soc., 2016, 138(8):2516-2519.

    22. [22]

      MARICHY C, PINNA N. Adv. Mater. Interfaces, 2016, 3(21):1600335.

    23. [23]

      CHAAYA A A, VITER R, BALEVICIUTE I, BECHELANY M, RAMANAVICIUS A, GERTNERE Z, ERTS D, SMYNTYNA V, MIELE P. J. Phys. Chem. C, 2014, 118(7):3811-3819.

    24. [24]

      GU Y, LU H, GENG Y, YE Z, ZHANG Y, SUN Q, DING S, ZHANG D. Nanoscale Res. Lett., 2013, 8(1):107-111.

    25. [25]

      COP P, CELIK E, HESS K, MORYSON Y, KLEMENT P, ELM T M, SMARSLY M B. ACS Appl. Nano Mater., 2020, 3(11):10757-10766.

    26. [26]

      JIAO S, LIU L, WANG J, MA K, LV J. Small, 2020, 16(28):2001223.

    27. [27]

      LIU L, MA K, XU X, SHANGGUAN C, LV J, ZHU S, JIAO S, WANG J. ACS Appl. Mater. Interfaces, 2020,12(26):29074-29084.

    28. [28]

      WU L, ZHOU X, WAN G, TANG Y, SHI S, XU X, WANG G. Dalton Trans., 2021, 50(13):95-102.

    29. [29]

      OCTAVIO G, MATTHIEU W, SEBASTIEN B, PHILIPPE M, MIKHAEL B. Biosens. Bioelectron., 2018, 122:147-159.

    30. [30]

      LESKELA M, RITALA M. Angew. Chem., Int. Ed., 2003, 42(45):5548-5554.

    31. [31]

      ASUNDI S A, RAIFORD A J, BENT F S. ACS Energy Lett., 2019,4(4):908-925.

    32. [32]

      PUURUNEN R L. J. Appl. Phys., 2005, 97(12):121301.

    33. [33]

      FABREGUETTE F H, WIND R A, GEORGE S M. Appl. Phys. Lett., 2006, 88(1):013116.

    34. [34]

      GRONER M D, ELAM J W, FABREGUETTE F H, GEORGE S M. Thin Solid Films, 2002, 413(1-2):186-197.

    35. [35]

      YANG P, TONG X, WANG G, GAO Z, GUO X, QIN Y. ACS Appl. Mater. Interfaces, 2015, 7(8):4772-4777.

    36. [36]

      WA Q, XIONG W, ZHAO R, HE Z, CHEN Y, WANG X. ACS Appl. Nano Mater., 2019, 2(7):4427-4434.

    37. [37]

      CHOI T, KIM S H, LEE C W, KIM H, CHOI S K, KIM S H, KIM E, PARK J, KIM H. Biosens. Bioelectron.,2015, 63:325-330.

    38. [38]

      RAZA M H, MOVLAEE K, WU Y, SAYED M, KARG M, LEONARDI G S, NERI G, PINNA N. ChemElectroChem, 2019, 6(2):383-392.

    39. [39]

      ZHUIYKOV S, HYDE L, HAI Z, AKBARI M K, KATS E, DETAVERNIER C, XUE C, XU C. Appl. Mater. Today, 2017, 6:44-53.

    40. [40]

      XU H, WEI Z, VERPOORT F, HU J, ZHUIYKOV S. Nanoscale Res. Lett., 2020, 15(1):41-55.

    41. [41]

      ZHANG C, HUANG B, QIAN L, YUAN S, WANG S, CHEN R. ChemPhysChem, 2016, 17(1):98-104.

    42. [42]

      WEI Z, HAI Z, AKBARI M K, QI D, XING K, ZHAO Q, VERPOORT F, HU J, HYDE L, ZHUIYKOV S. Sens. Actuators, B, 2018, 262:334-344.

    43. [43]

      ZHAO L, YU J, YUE S, ZHANG L, WANG Z, GUO P, LIU Q. J. Electroanal. Chem., 2018, 808:245-251.

    44. [44]

      JANG D Y, KIM Y P, KIM H S, KO P S H, CHOI S Y, CHOI Y K. J. Vac. Sci. Technol., B:Microelectron. Nanometer Struct.-Process., Meas., Phenom., 2007, 25(2):443-447.

    45. [45]

      CHEN Y, LIU M, KANEKO T, MCINTYRE C P. Electrochem. Solid-State Lett., 2010, 13(3):29-32.

    46. [46]

      MA F, YANG B, ZHAO Z, ZHAO Y, PAN R, WANG D, KONG Y, CHEN Y, HUANG G, KONG J, MEI Y. ACS Appl. Nano Mater., 2020, 3(10):10032-10039.

    47. [47]

      WINKLER T E, DIETRICH R, KIM E, BEN Y H, KELLY D L, PAYNE G F, GHODSSI R. Electrochem. Commun., 2017, 79:33-36.

    48. [48]

      CHEN P, MITSUIT B, FARMER B D, GOLOVCHENKO J, GORDON G R, BRANTON D. Nano Lett., 2004, 4(7):1333-1337.

    49. [49]

      LEPOITEVIN M, BECHELANY M, BALANZAT E, JANOT J M, BALME S. Electrochim. Acta, 2016, 211:611-618.

    50. [50]

      NG S, PRASEK J, ZAZPE R, PYTLICEK Z, SPOTZ Z, PEREIRA Z R, MICHALICKA J, PRIKRYL J, MILOSKRBAL M, SOPHA H, HUBALEK J, MACAK M J. ACS Appl. Mater. Interfaces, 2020, 12(29):33386-33396

    51. [51]

      FAN K, GUO J, CHA L, CHEN Q, MA J. J. Alloys Compd., 2017, 698:336-340.

    52. [52]

      LIU B, ALAMRI M, WALSH M, DOOLIN L J, BERRIE L C, WU Z J. ACS Appl. Mater. Interfaces, 2020, 12(47):53115-53124.

    53. [53]

      WEI Z, HAI Z, AKBARI M K, HU J, HYDE L, DEPUYDT S, VERPOORT F, ZHUKOV S. ChemElectroChem, 2018, 5(2):266-272.

    54. [54]

      BAE G, JEON S I, JANG M, SONG W, MYUNG S, LIM J, LEE S S, JUNG H K, PARK H Y, AN K S. ACS Appl. Mater. Interfaces, 2019, 11(18):16830-16837.

    55. [55]

      HONG Y, WU M, BAE J H, HONG S, JEONG Y, JANG D, KIM S J, HWANG S H, PARK B G, LEE J H, Sens. Actuators, B, 2020, 302:127147.

    56. [56]

      JIN C, KIM H, PARK S, CHOI S W, KIM S S, LEE C. Surf. Interface Anal., 2012, 44(11-12):1534-1537.

    57. [57]

      BANG H J, LEE N, MIRZAEI A, CHOI S M, CHOI H, JEON H, KIM S S, KIM W H. Sens. Actuators, B, 2020, 319:128309.

    58. [58]

      KONDALKAR V V, DUY T L, SEO H, LEE K. ACS Appl. Mater. Interfaces, 2019, 11(29):25891-25900.

    59. [59]

      TAKACS M, DUCSO C, PAPE A. J. Mater. Sci.:Mater. Electron., 2017, 22(28):17148-17155.

    60. [60]

      YAO T, YAN L. Ceram. Int., 2020, 46(7):9936-9942.

    61. [61]

      XU Y, ZHENG L, YANG C, ZHENG W, LIU X, ZHANG J. Sens. Actuators, B, 2020, 310:127846.

    62. [62]

      LOU C, YANG C, ZHENG W, LIU X, ZHANG J. Sens. Actuators, B, 2021, 329:129218.

    63. [63]

      XU Y, LOU C, ZHENG L, ZHENG W, LIU X, KUMAR M, ZHANG J. Sens. Actuators, B, 2020, 307:127616.

    64. [64]

      RAZA M H, MOVLAEE K, LEONARDI S G, BARSAN N, NERI G, PINNA N. Adv. Funct. Mater., 2020, 30(6):1906874.

    65. [65]

      XU Y, ZHENG W, LIU X, ZHANG L, ZHENG L, YANG C, PINNA N, ZHANG J. Mater. Horiz., 2020, 7(6):1519-1527.

  • 加载中
    1. [1]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    7. [7]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(41)
  • Abstract views(1520)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return