Citation: MA Yi,  QI Xie-Min,  WU Hai-Ping,  MA Xue-Ping,  CHU Ya-Nan,  WANG Xue-Mei,  ZHOU Guo-Hua. Research Progress in Paper-based Biosensors for Pathogen Nucleic Acids[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1945-1954. doi: 10.19756/j.issn.0253-3820.210465 shu

Research Progress in Paper-based Biosensors for Pathogen Nucleic Acids

  • Corresponding author: ZHOU Guo-Hua, ghzhou@nju.edu.cn
  • Received Date: 25 April 2021
    Revised Date: 20 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.61871403), the Jiangsu Provincial Science Fund for Distinguished Young Scholars (No.BK20180005) and the Jiangsu Provincial Medical Youth Talent Program (Nos.QNRC2016889, QNRC2016845).

  • Infectious diseases caused by pathogens seriously threaten human life and health. Rapid and accurate detection of pathogens is an important prerequisite for effective prevention and control of infectious diseases. However, traditional methods for detection of pathogen nucleic acid often require professional personnel and specialized instruments and equipments, which challenges the realization of field detection of pathogen. Using paper as matrix to construct biosensor has the advantages of light and portable, low cost and intuitive results, and is suitable for rapid detection of pathogens in the field by combining with nucleic acid amplification method. Currently, the paper-based pathogen nucleic acid detection technique mainly includes two types:lateral flow strips and paper-based microfluidic devices. Here, antibody-dependent and antibody-independent lateral flow strips, two- and three-dimensional paper-based microfluidic devices and fabrication techniques are reviewed, and the strategies of developing paper-based integrated devices for nucleic acid extraction, amplification and detection of pathogens are introduced, which can provide a reference for the development of new techniques for the field detection of pathogens.
  • 加载中
    1. [1]

      CHOI Y J, HWANG J H, LEE S Y. Small Methods, 2018, 2(4):1700351.

    2. [2]

      ZHOU P, YANG X L, WANG X G, HU B, ZHANG L, ZHANG W, SI H R, ZHU Y, LI B, HUANG C L, CHEN H D, CHEN J, LUO Y, GUO H, JIANG R D, LIU M Q, CHEN Y, SHEN X R, WANG X, ZHENG X S, ZHAO K, CHEN Q J, DENG F, LIU L L, YAN B, ZHAN F X, WANG Y Y, XIAO G F, SHI Z L. Nature, 2020, 579(7798):270-273.

    3. [3]

      CHAN J F, YUAN S, KOK K H, TO K K, CHU H, YANG J, XING F, LIU J, YIP C C, POON R W, TSOI H W, LO S K, CHAN K H, POON V K, CHAN W M, IP J D, CAI J P, CHENG V C, CHEN H, HUI C K, YUEN K Y. Lancet, 2020, 395(10223):514-523.

    4. [4]

      ZHU N, ZHANG D, WANG W, LI X, YANG B, SONG J, ZHAO X, HUANG B, SHI W, LU R, NIU P, ZHAN F, MA X, WANG D, XU W, WU G, GAO G F, TAN W. N. Engl. J. Med., 2020, 382(8):727-733.

    5. [5]

      WANG C, HORBY P W, HAYDEN F G, GAO G F. Lancet, 2020, 395(10223):470-473.

    6. [6]

      JIANG S, SHI Z, SHU Y, SONG J, GAO G F, TAN W, GUO D. Lancet, 2020, 395(10228):949.

    7. [7]

      ZOUMPOURLIS V, GOULIEMAKI M, RIZOS E, BALIOU S, SPANDIDOS D A. Mol. Med. Rep., 2020,22(4):3035-3048.

    8. [8]

      DAWOOD F S, JAIN S, FINELLI L, SHAW M W, LINDSTROM S, GARTEN R J, GUBAREVA L V, XU X, BRIDGES C B, UYEKI T M. N. Engl. J. Med., 2009, 360(25):2605-2615.

    9. [9]

      ZHONG N S, ZHENG B J, LI Y M, POON L L M, XIE Z H, CHAN K H, LI P H, TAN S Y, CHANG Q,XIE J P, LIU X Q, XU J, LI D X,YUEN K Y, PEIRIS J S M, GUAN Y. Lancet, 2003, 362(9393):1353-1358.

    10. [10]

      DWIVEDI H P, JAYKUS L A. Crit. Rev. Microbiol., 2011, 37(1):40-63.

    11. [11]

      STEPHANIE D G, KRUTI R P. J. Invest. Dermatol., 2013, 133(e12):1-3.

    12. [12]

      SALLY A B, MICHAEL C, MICHA N. Transfus. Med. Hemother., 2015, 42(4):211-218.

    13. [13]

      KLING C E, PERKINS J D, LANDIS C S, LIMAYE A P, SIBULESKY L. Am. J. Transplant., 2017, 17(11):2863-2868.

    14. [14]

      CHEN H, LIU K K, LI Z, WANG P. Clin. Chim. Acta, 2019, 493:138-147.

    15. [15]

      PEAPER D R, DURANT T, CAMPBELL S. Clin. Lab Med., 2019, 39(3):419-431.

    16. [16]

      POSCHENRIEDER A, THALER M, JUNKER R, LUPPA P B. Anal. Bioanal. Chem., 2019, 411(29):7607-7621.

    17. [17]

      MARTINEZ A W, PHILLIPS S T, BUTTE M J, WHITESIDES G M. Angew. Chem., Int. Ed., 2007, 46(8):1318-1320.

    18. [18]

      CATE D M, ADKINS J A, METTAKOONPITAK J, HENRY C S. Anal. Chem., 2015, 87(1):19-41.

    19. [19]

      YETISEN A K, AKRAM M S, LOWE C R. Lab Chip, 2013, 13:2210-2251.

    20. [20]

      BAHADIR E B, SEZGINTURK M K. TrAC-Trends Anal. Chem., 2016, 82:286-306.

    21. [21]

      BATULE B S, SEOK Y, KIM M G. Biosens. Bioelectron., 2020, 151:111998.

    22. [22]

      JIANG X, LOEB J C, PAN M, FAN Z H. Anal. Chim. Acta, 2021, 1165:338542.

    23. [23]

      LEUVEING J H, THAL P J, VAN DER WAART M, SCHUURS A H. J. Immunol. Methods, 1981, 45:183-194.

    24. [24]

      KAINZ D M, FRVH S M, HUTZENLAUB T, ZENGERLE R, PAUST N. Lab Chip, 2019, 19(16):2718-2727.

    25. [25]

      KIM S H, LEE J, LEE B H, SONG C S, GU M B. Biosens. Bioelectron., 2019, 134:123-129.

    26. [26]

      WANG X K, WANG X D, SHI C, MA C P, CHEN L X. Talanta, 2020, 216:120978.

    27. [27]

    28. [28]

      LUO K, KIM H Y, OH M H, KIM Y R. Crit. Rev. Food Sci. Nutr., 2020, 60(1):157-170.

    29. [29]

      TAKABATAKE R, KAGIYA Y, MINEGISHI Y, FUTO S, SOGA K, NAKAMURA K, KONDO K, MANO J, KITTA K. J. Agric. Food Chem., 2018, 66(29):7839-7845.

    30. [30]

      YANG M, MUDABUKA B, QUIZON K, NFON C. Transbound. Emerg. Dis., 2019, 66(3):1158-1166.

    31. [31]

      JUNG J H, OH S J, KIM Y T, KIM S Y, KIM W J, JUNG J, SEO T S. Anal. Chim. Acta, 2015, 853:541-547.

    32. [32]

      HUANG P, WANG H, CAO Z, JIN H, CHI H, ZHAO J, YU B, YAN F, HU X, WU F, JIAO C, HOU P, XU S, ZHAO Y, FENG N, WANG J, SUN W, WANG T, GAO Y, YANG S, XIA X. Front. Microbiol., 2018, 9:1101-1110.

    33. [33]

      GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, JOUNG J, COLLINS J J, ZHANG F. Science, 2018, 360(6387):439-444.

    34. [34]

      MYHRVOLD C, FREIJE C A, GOOTENBERG J S, ABUDAYYEH O O, METSKY H C, DURBIN A F, KELLNER M J, TAN A L, PAUL L M, PARHAM L A, GARCIA K F, BARNES K G, CHAK B, MONDINI A, NOGUEIRA M L, ISERN S, MICHAEL S F, LORENZANA I, YOZWIAK N L, MACINNIS B L, BOSCH I, GEHRKE L, ZHANG F, SABETI P C. Science, 2018, 360(6387):444-448.

    35. [35]

      ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, JOUNG J, SLAYMAKER I M, COX D B T, SHMAKOV S, MAKAROVA K S, SEMENOVA E, MINAKHIN L, SEVERINOV K, REGEV A, LANDER E S, KOONIN E V, ZHANG F. Science, 2016, 353(6299):aaf5573.

    36. [36]

      SMARGON A A, COX D B T, PYZOCHA N K, ZHENG K, SLAYMAKER I M, GOOTENBERG J S, ABUDAYYEH O A, ESSLETZBICHLER P, SHMAKOV S, MAKAROVA K S, KOONIN E V, ZHANG F. Mol. Cell, 2017, 65(4):618-630.

    37. [37]

      CHEN J S, MA E, HARRINGTON L B, COSTA M D, TIAN X R, PALEFSKY J M, DOUDNA J A. Science, 2018, 360(6387):436-439.

    38. [38]

      BROUGHTON J P, DENG X, YU G, FASCHING C L, SERVELLITA V, SINGH J, MIAO X, STREITHORST J A, GRANADOS A, SOTOMAYOR GONZALEZ A, ZOM K, GOPEZ A, HSU E, GU W, MILLER S, PAN C Y, GUEVARA H, WADFORD D A, CHEN J S, CHIU C Y. Nat. Biotechnol., 2020, 38(7):870-874.

    39. [39]

      ZHANG F, ABUDAYYEH O O, GOOTENBERG J S. (2020-03-21)[2021-04-24], https://broad.io/sherlockprotocol.

    40. [40]

      PATCHSUNG M, JANTARUG K, PATTAMA A, APHICHO K, SURARITDECHACHAI S, MEESAWAT P, SAPPAKHAW K, LEELAHAKORN N, RUENKAM T, WONGSATIT T, ATHIPANYASILP N, EIAMTHONG B, LAKKANASIRORAT B, PHOODOKMAI T, NILJIANSKUL N, PAKOTIPRAPHA D, CHANARAT S, HOMCHAN A, TINIKUL R, KAMUTIRA P, PHIWKAOW K, SOITHONGCHAROEN S, KANTIWIRIYAWANITCH C, PONGSUPASA V, TRISRIVIRAT D, JAROENSUK J, WONGNATE T, MAENPUEN S, CHAIYEN P, KAMNERDNAKTA S, SWANGSRI J, CHUTHAPISITH S, SIRIVATANAUKSORN Y, CHAIMAYO C, SUTTHENT R, KANTAKAMALAKUL W, JOUNG J, LADHA A, JIN X, GOOTENBERG J S, ABUDAYYEH O O, ZHANG F, HORTHONGKHAM N, UTTAMAPINANT C. Nat. Biomed. Eng., 2020, 4(12):1140-1149.

    41. [41]

      AVEYARD J, MEHRABI M, COSSINS A, BRAVEN H, WILSON R. Chem. Commun., 2007, (41):4251-4253.

    42. [42]

      MONDEN Y, TAKASAKI K, FUTO S, NIWA K, KAWASE M, AKITAKE H, TAHARA M. J. Biotechnol., 2014, 185:57-62.

    43. [43]

      TIAN L Y, SATO T, NIWA K, KAWASE M, TANNER A C R, NOBUHIRO T. BioMed. Res. Int., 2014, 2014:180323.

    44. [44]

      TAKAEADA Y, KODERA T, KOBAYASHI K, NAKAJIMA C, KAWASE M, SUZUKI Y. J. Microbiol. Methods, 2020, 177:106062.

    45. [45]

      YANG Y, NOVIANA E, NGUYEN M P, GEISS B J, DANDY D S, HENRY C S. Anal. Chem., 2017, 89(1):71-91.

    46. [46]

      CATE D M, ADKINS J A, METTAKOONPITAK J, HENRY C S. Anal. Chem., 2015, 87(1):19-41.

    47. [47]

      CHINNADAYYALA S R, PARK J, LE H T N, SANTHOSH M, KADAM A N, CHO S. Biosens. Bioelectron., 2019, 126:68-81.

    48. [48]

      BEDIN F, BOULET L, VOILIN E, THEILLET G, RUBENS A, ROZAND C. J. Med. Virol., 2017, 89(9):1520-1527.

    49. [49]

      HU J, WANG S Q, WANG L, LI F, PINGGUAN-MURPHY B, LU T J, XU F. Biosens. Bioelectron., 2014, 54:585-597.

    50. [50]

      WHITESIDES G M. Nature, 2006, 442(7101):368-373.

    51. [51]

      REN K, ZHOU J, WU H. Acc. Chem. Res., 2013, 46(11):2396-406.

    52. [52]

      NOVIANA E, MCCORD C P, CLARK K M, JANG I, HENRY C S. Lab Chip, 2020, 20(1):9-34.

    53. [53]

      HORST A L, ROSENBOHM J M, KOLLURI N, HARDICK J, GAYDOS C A, CABODI M, KLAPPERICH C M, LINNES J C. Biomed. Microdevices, 2018, 20(2):35-49.

    54. [54]

      LI X, BALLERINI D R, SHEN W. Biomicrofluidics, 2012, 6(1):011301.

    55. [55]

      MORBIOLI G G, MAZZU-NASCIMENTO T, STOCKTON A M, CARRILHO E. Anal. Chim. Acta, 2017, 970:1-22.

    56. [56]

      MORA M F, GARCIA C D, SCHAUMBURG F, KLER P A, BERLI C L A, HASHIMOTO M, CARRILHO E. Anal. Chem., 2019, 91(13):8298-8303.

    57. [57]

      ASANO H, SHIRAISHI Y. Anal. Chim. Acta, 2015, 883:55-60.

    58. [58]

      RAJ N, BREEDVELD V, HESS D W. Lab Chip, 2019, 19(19):3337-3343.

    59. [59]

      DE OLIVEIRA T R, FONSECA W T, DE OLIVEIRA SETTI G, FARIA R C. Talanta, 2019, 195:480-489.

    60. [60]

      GHOSH R, GOPALAKRISHNAN S, SAVITHA R, RENGANATHAN T, PUSHPAVANAM S. Sci. Rep., 2019, 9:7896.

    61. [61]

      CHIANG C K, KURNIAWAN A, KAO C Y, WANG M J. Talanta, 2019, 194:837-845.

    62. [62]

      DUNGCHAI W, CHAILAPAKUL O, HENRY C S. Analyst, 2011, 136(1):77-82.

    63. [63]

      SONGOK J, TOIVAKKA M. ACS Appl. Mater. Interfaces, 2016, 8(44):30523-30530.

    64. [64]

      ROBERT B C, MICHAEL P N, ALEXIS G S, ELIJAH M H, JOHN V, DAVID S D, CHARLES S H. Lab Chip, 2018, 18:793-802.

    65. [65]

      SOUM V, PARK S, BRILIAN A I, CHOI J Y, LEE Y W, KIM W J, KWONA O S, SHIN K. Lab Chip, 2020, 20:1601-1611.

    66. [66]

      KAARJ K, AKARAPIPAD P, YOON J Y. Sci. Rep., 2018, 8:21438.

    67. [67]

      KAUSHIK A, TIWARI S, DEV JAYANT R, NAIR M. Biosens. Bioelectron., 2016, 75:254-272.

    68. [68]

      XIA Y, SI J, LI Z. Biosens. Bioelectron., 2016, 77:774-789.

    69. [69]

      TEENGAM P, SIANGPROH W, TUANTRANONT A, VILAIVAN T, CHAILAPAKUL O, HENRY C S. Anal. Chem., 2017, 89(10):5428-5435.

    70. [70]

      CHOI J R, HU J, TANG R H, GONG Y, FENG S S, REN H, WEN T, LI X, ABAS W A B W, MURPHY B P, XU F. Lab Chip, 2016, 16:611-621.

    71. [71]

      RODRIGUEZ N M, WONG W S, LIU L, DEWAR R, KLAPPERICH C M. Lab Chip, 2016, 16:753-763.

    72. [72]

      XU G L, NOLDER D, REBOUD J, OGUIKE M C, SCHALKWYK D A, SUTHERLAND C J, COOPER J M. Angew. Chem., Int. Ed., 2016, 55(49):15250-15253.

    73. [73]

      REBOUD J, XU G L, GARRETT A, ADRIKO M, YANG Z G, TUKAHEBWA E M, ROWELL C, COOPER J M. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(11):4834-4842.

    74. [74]

      MAGRO L, JACQUELIN B, ESCADAFAL C, GARNERET P, KWASIBORSKI A, MANUGUERRA J C, MONTI F, SAKUNTABHAI A, VANHOMWEGEN J, LAFAYE P. Sci. Rep., 2017, 7:1347.

    75. [75]

      AHN H, BATULE B S, SEOK Y, KIM M G. Anal. Chem., 2018, 90(17):10211-10216.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    4. [4]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    5. [5]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    6. [6]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    7. [7]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Yongmei Chen Lidan Zhang Shunlai Li Chunting Zhang Meng Cui Qinghong Xu Lan Jin Chunchuang Li Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017

    10. [10]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    13. [13]

      Yue Zhang Chengxin Shang Caihong Zhang Jikai Pei Lihong Shi Pengfei Gao Zhiqi Jia Songbai Wang Junsheng Hao Guomei Zhang Wei Guo . Reforms and Practices of the Chemistry Experimental Teaching Demonstration Center under the Background of National First-Class Major Construction. University Chemistry, 2024, 39(7): 207-210. doi: 10.12461/PKU.DXHX202405134

    14. [14]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Jiali Lin Shuting Wu Cheng Zheng Zian Lin Qiaohua Wei Shoutian Zheng . Construction and Practice of National Chemical Experiment Teaching Demonstration Center in Local Universities under the Background of “Double First-Class”. University Chemistry, 2024, 39(7): 129-139. doi: 10.12461/PKU.DXHX202405043

    17. [17]

      Yong Zhao Yunmei Bi Liqin Wang Rui Zhan Guoli Huang . Construction and Practice of Organic Chemistry Course in Normal Universities from the Perspective of First-Class Curriculum. University Chemistry, 2024, 39(8): 54-63. doi: 10.3866/PKU.DXHX202312088

    18. [18]

      Wenyi Li Zhifeng Xu Junbin Sun Fangfang Mao Mansheng Chen Weihong Lu Yang Liu Geng Huang . Reform and Practice of the National First-Class Undergraduate Course “Inorganic Chemistry Experiment” in Local Normal Colleges. University Chemistry, 2024, 39(10): 389-395. doi: 10.12461/PKU.DXHX202402025

    19. [19]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    20. [20]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

Metrics
  • PDF Downloads(12)
  • Abstract views(597)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return