Citation: CHANG Jun-Yu,  HU Qi,  ZHI Hui,  FENG Liang. A Rapid Triethylamine Detector Based on Polypyrrole Aerogel[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1873-1880. doi: 10.19756/j.issn.0253-3820.210437 shu

A Rapid Triethylamine Detector Based on Polypyrrole Aerogel

  • Corresponding author: FENG Liang, fengl@dicp.ac.cn
  • Received Date: 14 April 2021
    Revised Date: 9 July 2021

    Fund Project: Supported by the Key Project of Chinese Academy of Sciences (Nos.KFJ-STS-ZDTP-083, KFJ-STS-QYZD-2021-17-004), the Dalian Distinguished Young Scholars (No.2018RJ02) and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (No.DICP ZZBS201802).

  • With the increasingly urgent need of human health, the sensing devices for toxic and harmful gases monitoring are becoming more and more important. Among them, the detection of triethylamine (TEA) is of great significance for human health, environmental protection and food safety, which puts forward a great challenge on sensing materials with high sensitivity and excellent stability. Herein, polypyrrole (PPy) aerogel was prepared by the room temperature standing method. The as-prepared PPy aerogel materials showed many advantages such as environmental friendliness, reliable repeatability, good selectivity and ease to be synthesized. The results of scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) pore size distribution analyzing showed that the PPy aerogel materials contained a variety of pore structures, which was conducive to its good sensing performance for TEA. The PPy aerogel sensor showed an extremely fast response to TEA (the response time was about 70 s), which was even better than that of many high temperature sensors. At the same time, the senor had a sensitive response to TEA, which was manifested in linear sensibility (10-100 μL/L) and low limit of detection (60 nL/L). The response of the sensor (ΔR/Ra) toward 100 μL/L TEA was about 26%. In brief, the PPy aerogel senor realized quantitative detection of TEA, which was helpful for its application in environmental detection and food safety analysis.
  • 加载中
    1. [1]

      ZHAI C, LUO Z, LIANG X, SONG X, ZHANG M. J. Alloys Compd., 2021, 857(8):157545.

    2. [2]

      GAO H, MA Y, SONG P, YANG Z, WANG Q. Mater. Sci. Semicond. Process, 2021, 123(3):105510.

    3. [3]

      WANG C. Chem. Phys. Lett., 2020, 749(12):137471.

    4. [4]

      WEI W, ZHAO J, SHI S, LIN H, MAO Z, ZHANG F, QU F. J. Mater. Chem. C, 2020, 8(20):6734-6742.

    5. [5]

      ZHOU S, LU Q, CHEN M, LI B, WEI H, ZI B, ZENG J, ZHANG Y, ZHANG J, ZHU Z, LIU Q. ACS Appl. Mater. Interfaces, 2020, 12(38):42962-42970.

    6. [6]

      LIU M, WANG C, YANG M, TANG L, WANG Q, SUN Y, XU Y. Mater. Sci. Semicond. Process, 2021, 125(5):105643.

    7. [7]

    8. [8]

    9. [9]

      LIU H, CAO X, WU H, LI B, LI Y, ZHU W, YANG Z, HUANG Y. Sens. Actuators, B, 2020, 324(23):128743.

    10. [10]

      SUN Y, DONG Z, ZHANG D, ZENG Z, ZHAO H, AN B, XU J, WANG X. Sens. Actuators, B, 2021, 326(1):128791.

    11. [11]

    12. [12]

      HU Q, HE J, CHANG J, GAO J, HUANG J, FENG L. ACS Appl. Nano Mater., 2020, 3(9):9046-9054.

    13. [13]

      LOU C, LI Z, YANG C, LIU X, ZHENG W, ZHANG J. Sens. Actuators, B, 2021, 333(8):129572.

    14. [14]

      MA Z, CHEN P, CHENG W, YAN K, PAN L, SHI Y, YU G. Nano Lett., 2018, 18(7):4570-4575.

    15. [15]

      QUAN L, SUN J, BAI S, LUO R, LI D, CHEN A, LIU C C. Appl. Surf. Sci., 2017, 399(9):583-591.

    16. [16]

      BAI S, ZHAO Y, SUN J, TONG Z, LUO R, LI D, CHEN A. Sens. Actuators, B, 2017, 239(2):131-138.

    17. [17]

    18. [18]

      ZHAI C, ZHAO Q, GU K, XING D, ZHANG M. J. Alloys Compd., 2019, 784(15):660-667.

    19. [19]

      BAI S, MA Y, LUO R, CHEN A, LI D. RSC Adv., 2016, 6(4):2687-2694.

    20. [20]

      GAO J, QIN J, CHANG J, LIU H, WU Z S, FENG L. ACS Appl. Mater. Interfaces, 2020, 12(34):38674-38681.

    21. [21]

      CHANG J, MENG H, LI C, GAO J, CHEN S, HU Q, LI H, FENG L. Adv. Mater. Technol., 2020, 5(5):1901087.

    22. [22]

      XIE A, WU F, SUN M, DAI X, XU Z, QIU Y, WANG Y, WANG M. Appl. Phys. Lett., 2015, 106(22):222902.

    23. [23]

      LU Y, HE W, CAO T, GUO H, ZHANG Y, LI Q, SHAO Z, CUI Y, ZHANG X. Sci. Rep., 2014, 4:5792.

    24. [24]

      QIN J, GAO J, SHI X, CHANG J, DONG Y, ZHENG S, WANG X, FENG L, WU Z S. Adv. Funct. Mater., 2020, 30(16):1909756.

    25. [25]

      ZHANG E, LIU W, LIU X, ZHAO Z, YANG Y. RSC Adv., 2020, 10(20):11966-11970.

    26. [26]

      HUANG J, YANG T, KANG Y, WANG Y, WANG S. J. Nat. Gas Chem., 2011, 20(5):515-519.

    27. [27]

      LI S, ZHAO C, ZHOU S, ZHANG Y, ZHU P, YU J. Chem. Eng. J., 2020, 385(7):123397.

    28. [28]

      XUE D, WANG Y, CAO J, ZHANG Z. Nanomaterials, 2018, 8(12):1025.

    29. [29]

    30. [30]

      YANG Y, WANG X, YI G, LI H, SHI C, SUN G, ZHANG Z. Nanomaterials, 2019, 9(11):1599.

    31. [31]

      SUI L L, XU Y M, ZHANG X F, CHENG X L, GAO S, ZHAO H, CAI Z, HUO L H. Sens. Actuators, B, 2015, 208(3):406-414.

    32. [32]

      XUE X, FU Y, WANG Q, XING L, ZHANG Y. Adv. Funct. Mater., 2016, 26(18):3128-3138.

    33. [33]

      SHEN Z, ZHANG X, MI R, LIU M, CHEN Y, CHEN C, RUAN S. Sens. Actuators, B, 2018, 270(17):492-499.

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    5. [5]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    16. [16]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    17. [17]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(6)
  • Abstract views(856)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return