Citation: YAO Meng-Ting,  QI Kai-Li,  MEI Zheng-Fang,  CHEN Rong-Sheng. Fabrication of Carbon Quantum Dots Decorated TiO2 Nanotube Arrays for Photoelectrochemical Determination of 5-Hydroxytryptamine[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2005-2014. doi: 10.19756/j.issn.0253-3820.210432 shu

Fabrication of Carbon Quantum Dots Decorated TiO2 Nanotube Arrays for Photoelectrochemical Determination of 5-Hydroxytryptamine

  • Corresponding author: CHEN Rong-Sheng, chenrs@wust.edu.cn
  • Received Date: 12 April 2021
    Revised Date: 2 September 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2020YFC1909702).

  • A novel photoelectrochemical (PEC) sensor was constructed based on carbon quantum dots decorated titanium dioxide nanotube arrays (TiO2 NTAs/CQDs). Highly ordered self-supporting titanium dioxide nanotube arrays (TiO2 NTAs) were prepared on the surface of a titanium foil by electrochemical anodization. The diameter and the length of TiO2 nanotube were around 80 nm and 8 μm, respectively. CQDs were prepared by electrochemical anodization of a graphite electrode, with a diameter of 3-9 nm. Uniformly distributed CQDs were decorated on the inner walls of TiO2 NTAs by hydrothermal treatment, examined by TEM observation. CQDs could effectively reduce the band gap of TiO2 NTAs and enhanced its response under visible light. CQDs were electron acceptors that could promote the separation of photo-generated electron-hole pairs. The conductance of TiO2 NTAs was also enhanced by CQDs decoration. Under visible light, TiO2 NTAs/CQDs exhibited excellent PEC response toward 5-hydroxytryptamine (5-HT), with a linear range of 20-300 μmol/L and a detection limit of 11.5 μmol/L (S/N=3). Moreover, the PEC sensor showed good selectivity and stability for determination of 5-HT and was successfully applied to determination of 5-HT in human serum.
  • 加载中
    1. [1]

      JONES L A, SUN E W, MARTIN A M, KEATING D J. Int. J. Biochem. Cell Biol., 2020, 125:105776.

    2. [2]

      MATYS J, GIEROBA B, JOZWIAK K. J. Pharmaceut. Biomed. Anal., 2020, 180:113079.

    3. [3]

      PARK S, KIM Y, LEE J, LEE J Y, KIM H, LEE S, OH C M. Int. J. Mol. Sci., 2021, 22(5):2452.

    4. [4]

      MICHELY J, ELDAR E, MARTIN I M, DOLAN R J. Nat. Commun., 2020, 11(1):2335.

    5. [5]

      CAI X, KALLARACKAL A J, KVARTA M D, GOLUSKIN S, GAYLOR K, BAILEY A M, LEE H K, HUGANIR R L, THOMPSON S M. Nat. Neurosci., 2013, 16(4):464-472.

    6. [6]

      OKATY B W, COMMONS K G, DYMECKI S M. Nat. Rev. Neurosci., 2019, 20(7):397-424.

    7. [7]

      HOYER D. Neuropharmacology, 2020, 179:108233.

    8. [8]

      SELVARJAN S, SUGANTHI A, RAJARAJAN M. Ultrason. Sonochem., 2018, 44:319-330.

    9. [9]

      PANHOLZER T J, BEYER J R, LICHTWALD K. Clin. Chem., 1999, 45(2):262-268.

    10. [10]

      COELHO A G, AGUIAR F P C, JESUS D P. J. Braz. Chem. Soc. 2014, 25(4):783-787.

    11. [11]

      LEI Y, YANG F, LI Y T, TANG L N, CHEN K L, ZHANG G J. Microchim. Acta, 2017, 184(7):2299-2305.

    12. [12]

      ZHANG C L, XU J Q, LI Y T, HUANG L, PANG D W, NING Y, HUANG W H, ZHANG Z Y, ZHANG G J. Anal. Chem., 2016, 88(7):4048-4054.

    13. [13]

      ZHAO W W, XU J J, CHEN H Y. Biosens. Bioelectron., 2017, 92:294-304.

    14. [14]

      ZANG Y, FAN J, JU Y, XUE H G, PANG H. Chem. Eur. J., 2018, 24(53):14010-14027.

    15. [15]

      FENG X, WEI Q, LI S, WEI X Z, YANG X F, SONG Z L, GENG B, LI Z J, ZHANG J, YAN M. Sens. Actuators, B, 2021, 330:129342.

    16. [16]

      ZHAO C Q, DING S N. Coordin. Chem. Rev., 2019, 391:1-14.

    17. [17]

      ZHANG R H, HU Q Z, KANG Q, QI L B, PANG Y P, YU L. Chin. J. Anal. Chem., 2021, 49(2):e21014-e21019.

    18. [18]

      KUMAR N, CHAUHAN N S, MITTAL A, SHARMA S. Biometals, 2018, 31(2):147-159.

    19. [19]

      MA X G, WANG C, WU F X, GUAN Y R, XU G B. Top. Curr. Chem., 2020, 378(2):28.

    20. [20]

      WANG W G, LIU Y, WU X, WANG J, FU L J, ZHU Y S, WU Y P, LIU X. Adv. Mater. Technol., 2018, 3(9):1800004.

    21. [21]

      LIU P P, LIU X Q, HUO X H, TANG Y F, XU J, JU H X. ACS Appl. Mater. Interfaces, 2017, 9(32):27185-27192.

    22. [22]

      PAN L, ZHOU Z W, LIU Y T, XIE X M. J. Mater. Chem. A, 2018, 6(16):7070-7079.

    23. [23]

      LEE K, YOON H, AHN C, PARK J, JEON S. Nanoscale, 2019, 11(15):7025-7040.

    24. [24]

      SU J Y, ZHU L, GENG P, CHEN G H. J. Hazard. Mater., 2016, 316(5):159-168.

    25. [25]

      SANG L X, LIN J, ZHAO Y B. Int. J. Hydrogen Energy, 2017, 42(17):12122-12132.

    26. [26]

      El-SHABASY R M, ELSADEK M F, AHMED B M, FARAHAT M F, MOSLEH K N, TAHER M M. Processes, 2021, 9(2):388.

    27. [27]

      ZHOU T S, CHEN S, LI L S, WANG J C, ZHANG Y, LI J H, BAI J, XIA L G, XU Q J, RAHIM M, ZHOU B X. Appl. Catal., B, 2020, 269:118776.

    28. [28]

      WANG Q, CAI J, BIESOLD-MCGEE G V, HUANG J Y, NG Y H, SUN H T, WANG J P, LAI Y K, LIN Z Q. Nano Energy, 2020, 78:105313.

    29. [29]

      AN Y R, TANG L L, JIANG X L, CHEN H, YANG M C, JIN L T, ZHANG S P, WANG C G, ZHANG W. Chem. Eur. J., 2010, 16(48):14439-14446.

    30. [30]

      ÇAKIROGIU B, ÖZACAR M. J. Electroanal. Chem. 2020, 878:114676.

    31. [31]

      TIAN J Y, LI Y, DONG J J, HUANG M J, LU J S. Biosens. Bioelectron., 2018, 110:1-7.

    32. [32]

      ARIFIN K, YUNUS R M, MINGGU L J, KASSIM M B. Int. J. Hydrogen Energy, 2021, 46(7):4998-5024.

    33. [33]

      CAMPOSECO R, CASTILLO S, NAVARRETE J, GOMEZ R. Catal. Today, 2016, 266:90-101.

    34. [34]

      ZUBAIR M, KIM H R, RAZZAQ A, GRIMES G A, IN S I. J. CO2 Util., 2018, 26:70-79.

    35. [35]

      LIU Y L, WAN L L, WANG J, CHENG L, CHEN R S, NI H W. Appl. Surf. Sci., 2020, 509:144679.

    36. [36]

      MING H, MA Z, LIU Y, PAN K M, YU H, WANG F, KANG Z H. Dalton Trans., 2012, 41(31):9526-9531.

    37. [37]

      YU X J, LIU J J, YU Y C, ZUO S L, LI B S. Carbon, 2014, 68:718-724.

    38. [38]

      DI G L, ZHU Z L, DAI Q, ZHANG H, SHEN X L, QIU Y L, HUANG Y Y, YU J N, KUPPERS S. Chem. Eng. J., 2020, 379:122296.

    39. [39]

      YU Z R, LIU H B, ZHU M Y, LI W X. Small, 2021, 17(9):1903378.

    40. [40]

      MAKUL P, PACIA M, MACYK W. J. Phys. Chem. Lett., 2018, 9:6814-6817.

    41. [41]

      PANDEY B, RANI S, ROY S C. J. Alloys Compd., 2020, 846:155881.

    42. [42]

      CHEN Y J, ZHANG S P, DAI H, HONG Z S, LIN Y Y. Biosens. Bioelectron., 2020, 148:111809.

    43. [43]

      CHEN Y J, ZHANG S P, HONG Z S, LIN Y Y, DAI H. J. Mater. Chem. B, 2019, 7:6972.

    44. [44]

      DAI H, ZHANG S P, HONG Z S, LI X H, XU G F, LIN Y Y. Anal. Chem., 2014, 86(13):6418-6424.

    45. [45]

      GAO B W, SUN M X, DING W, DING Z P, LIU W Z. Appl. Catal., B, 2021, 281:119492.

    46. [46]

      WANG C L, GAO W, LIU N Z, XIN Y, LIU X Y, WANG X T, TIAN Y, CHEN X W, HOU B R. Corros. Sci., 2020, 176:108920.

    47. [47]

      XIN Y M, LI Z Z, WU W L, FU B H, WU H J, ZHANG Z H. Biosens. Bioelectron., 2017, 87:396-403.

    48. [48]

      TERTIS M, CERNAT A, LACATIS D, FLOREA A, BOGDAN D, SUCIU M, SANDULESCU R, CRISTEA C. Electrochem. Commun., 2017, 75:43-47.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(14)
  • Abstract views(734)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return