Citation: LI Si,  GUO Xiao,  HAO Chang-Long,  XU Li-Guang,  KUANG Hua,  XU Chuan-Lai. DNA Driven Nanoprobe for Biological Sensing and Analysis[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1198-1207. doi: 10.19756/j.issn.0253-3820.210405 shu

DNA Driven Nanoprobe for Biological Sensing and Analysis

  • Corresponding author: XU Chuan-Lai, xcl@jiangnan.edu.cn
  • Received Date: 1 April 2021
    Revised Date: 4 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21631005, 21673104)

  • DNA driven inorganic nanostructures not only display great flexibility in structure regulation and simplicity in surface modification but also exhibit specific optical properties, which shows numerous advantages in bio-sensing, bio-imaging, in situ analysis of living cells. Scientists developed a series of detection strategies for in situ analysis of important targets in living cells, which can be used for early diagnosis and treatment of serious diseases (such as cancers) and spurred the development of living systems. In this review, we introduce the biological applications of DNA driven inorganic nanostructures, which is anticipated to guide the development of living system, medical field and biological area further.
  • 加载中
    1. [1]

      WU X L, HAO C L, KUMAR J, KUANG H, KOTOV N A, LIZ-MARZAN L M, XU C L. Chem. Soc. Rev., 2018, 47(13): 4677-4696.

    2. [2]

      MA W, XU L G, DE MOURA A F, WU X L, KUANG H, XU C L, KOTOV N A. Chem. Rev., 2017, 117(12): 8041-8093.

    3. [3]

      MIRKIN C A, LETSINGER R L, MUCIC R C, STORHOFF J J. Nature, 1996, 382(6592): 607-609.

    4. [4]

      PAL S, DENG Z T, WANG H N, ZOU S L, LIU Y, YAN H. J. Am. Chem. Soc., 2011, 133(44): 17606-17609.

    5. [5]

      KUZYK A, SCHREIBER R, FAN Z Y, PARDATSCHER G, ROLLER E M, HOGELE A, SIMMEL F C, GOVOROV A O, LIEDL T. Nature, 2012, 483(7389): 311-314.

    6. [6]

      CHEN Y, LIU H P, YE T, KIM J, MAO C D. J. Am. Chem. Soc., 2007, 129(28): 8696-8697.

    7. [7]

      GRELCZAK M, VERMANT J, FURST E M, LIZ-MARZAN L M. ACS Nano, 2010, 4(7): 3591-3605.

    8. [8]

      YAN W J, XU L G, XU C L, MA W, KUANG H, WANG L B, KOTOV N A. J. Am. Chem. Soc., 2012, 134(36): 15114-15121.

    9. [9]

      LAN X, LU X X, SHEN C Q, KE Y G, NI W N, WANG Q B. J. Am. Chem. Soc., 2015, 137(1): 457-462.

    10. [10]

      QU A H, SUN M Z, KIM J Y, XU L G, HAO C L, MA W, WU X L, LIU X G, KUANG H, KOTOV N A, XU C L. Nat. Biomed. Eng., 2021, 5(1): 103-113.

    11. [11]

      LI S, LIU J, RAMESAR N S, HEINZ H, XU L G, XU C L, KOTOV N A. Nat. Commun., 2019, 10: 4826.

    12. [12]

      WANG P P, YU S J, OUYANG M. J. Am. Chem. Soc., 2017, 139(17): 6070-6073.

    13. [13]

      SCHREIBER R, DO J, ROLLER E M, ZHANG T, SCHULLER V J, NICKELS P C, FELDMANN J, LIEDL T. Nat. Nanotechnol., 2013, 9(1): 74-78.

    14. [14]

      YEOM J, GUIMARAES P G, AHN H M, JUNG B K, HU Q Y, MCHUGH K, MITCHELL J, YUN C O, LANGER R, JAKLENEC A. Adv. Mater., 2020, 32: 1903878.

    15. [15]

      MA M R, ZHU H, LING J, GONG S Q, ZHANG Y, XIA Y S, TANG Z Y. ACS Nano, 2020, 14(4): 4036-4044.

    16. [16]

      LI A l, TANG L J, SONG D, SONG S S, MA W, XU L G, KUANG H, WU X l, LIU L Q, CHEN X, XU C L. Nanoscale, 2016, 8(4): 1873-1878.

    17. [17]

      QU A H, WU X L, XU L G, LIU L G, MA W, KUANG H, XU C L. Nanoscale, 2017, 9(11): 3865-3872.

    18. [18]

      XU L G, YAN W J, MA W, KUANG H, WU X L, LIU L Q, ZHAO Y, WANG L B, XU C L. Adv. Mater., 2015, 27(10): 1706-1711.

    19. [19]

      XU L G, YIN H H, MA W, KUANG H, WANG L B, XU C L. Biosens. Bioelectron., 2015, 67: 472-476.

    20. [20]

      WU X L, CHEN X, GAO F L, MA W, XU L G, KUANG H, LI A K, XU C L. Biosens. Bioelectron., 2016, 75: 55-58.

    21. [21]

      TANG L J, LI S, HAN F, LIU L Q, XU L G, MA W, KUANG H, LI A K, WANG L B, XU C L. Biosens. Bioelectron., 2015, 71: 7-12.

    22. [22]

      FENG J J, WU X L, MA W, KUANG H, XU L G, XU C L. Chem. Commun., 2015, 51(79): 14761-14763.

    23. [23]

      ZHU Y Y, KUANG H, XU L G, MA W, PENG C F, HUA Y F, WANG L B, XU C L. J. Mater. Chem., 2012, 22(6): 2387-2391.

    24. [24]

      XU L G, KUANG H, XU C L, MA W, WANG L B, KOTOV N A. J. Am. Chem. Soc., 2012, 134(3): 1699-1709.

    25. [25]

      XU L G, ZHAO S, MA W, WU X L, LI S, KAUNG H, WANG L B, XU C L. Adv. Funct. Mater., 2016, 26(10): 1602-1608.

    26. [26]

      CHEN G Y, QIU H L, PRASAD P, CHEN X Y. Chem. Rev., 2014, 114(10): 5161-5214.

    27. [27]

      LI L L, LU Y. J. Am. Chem. Soc., 2015, 137(16): 5272-5275.

    28. [28]

      MA W, FU P, SUN M Z, XU L G, KUANG H, XU C L. J. Am. Chem. Soc., 2017, 139(34): 11752-11759.

    29. [29]

      LI Z, LU S W, WANG Y L, CHEN S Y, LIU Z H. J. Am. Chem. Soc., 2015, 137(9): 3421-3427.

    30. [30]

      HAO C L, XU L G, KUANG H, XU C L. Adv. Mater., 2019, 32(41): 1802075.

    31. [31]

      LI S, XU L G, MA W, WU X L, SUN M Z, KUANG H, WANG L B, KOTOV N A, XU C L. J. Am. Chem. Soc., 2016, 138(1): 306-312.

    32. [32]

      XU Z, XU L G, ZHU Y Y, MA W, KUANG H, WANG L B, XU C L. Chem. Commun., 2012, 48(46): 5760-5762.

    33. [33]

      WU X L, XU L G, LIU L Q, MA W, YIN H H, KUANG H, WANG L B, XU C L, KOTOV N A. J. Am. Chem. Soc., 2013, 135(49): 18629-18636.

    34. [34]

      MA W, KUANG H, WANG L B, XU L G, CHANG W S, ZHANG H N, SUN M Z, ZHU Y Y, ZHAO Y, LIU L Q, XU C L, STEPHAN L, KOTOV K A. Sci. Rep., 2013, 3: 1964.

    35. [35]

      LAN X, LIU T J, WANG Z M, GOVOROV A, YAN H, LIU Y. J. Am. Chem. Soc., 2018, 140(37): 11763-11770.

    36. [36]

      ZHANG Q F, HERNANDEZ T, SMITH K W, JEBELI S A H, DAI A X, WARNING L, BAIYASI R, MCCARTHY L A, GUO H, CHEN D H, DIONNE J A, LANDES C F, LINK S. Science, 2019, 365(6460): 1475-1478.

    37. [37]

      GAO F L, SUN M Z, MA W, WU X L, LIU LQ, KUANG H, XU C L. Adv. Mater., 2017, 29(18): 1606864.

    38. [38]

      ZHOU C, DUAN X Y, LIU N. Acc. Chem. Res., 2017, 50(12): 2906-2914.

    39. [39]

      YAN W J, XU L G, MA W, LIU L Q, WANG L B, KUANG H, XU C L. Small, 2014, 10(21): 4293-4297.

    40. [40]

      MA W, SUN M Z, XU L G, WANG L B, KUANG H, XU C L. Chem. Commun., 2013, 49(44): 4989-4991.

    41. [41]

      TANG L J, LI Si, XU LG, MA W, KUANG H, WANG L B, XU C L. ACS Appl. Mater. Interfaces, 2015, 7(23): 12708-12712.

    42. [42]

      LI S, XU L G, MA W, KUANG H, WANG L B, XU C L. Small, 2015, 11(28): 3435-3439.

    43. [43]

      LI S, XU L G, SUN M Z, WU X L, LIU L Q, KUANG H, XU C L. Adv. Mater., 2017, 29(19): 1606086.

    44. [44]

      MASTROIANNI A J, CLARIDGE S A, PAUL A A. J. Am. Chem. Soc., 2009, 131(24): 8455-8459.

    45. [45]

      WANG L B, ZHU Y Y, XU L G, CHEN W, KUANG H, LIU L Q, AGARWAL A, XU C L, KOTOV N A. Angew. Chem., Int. Ed., 2010, 49(32): 5472-5475.

    46. [46]

      MA W, KUANG H, XU L, DING L, XU C L, WANG L B, KOTOV N A. Nat. Commun., 2013, 4: 2689.

    47. [47]

      ZHAO Y, XU L G, LIZ-MARZAN L, KUANG H, MA W, ASENJO G A, GAARCIA D A F J, KOTOV N A, WANG L B, XU C L. J. Phys. Chem. Lett., 2013, 4(4): 641-647.

    48. [48]

      SUN M Z, XU L G, MA W, WU X L, KUANG H, WANG B, XU L. Adv. Mater., 2016, 28(5): 898-904.

    49. [49]

      KUANG H, MA W, XU L G, WANG L B, XU C L. Acc. Chem. Res., 2013, 46(11): 2341-2354.

    50. [50]

      ZHANG Q X, WANG F, ZHANG H X, ZHANG Y Y, LIU M L, LIU Y. Anal. Chem., 2018, 90(21): 12737-12744.

    51. [51]

      DONG H F, LEI J P, JU H X, ZHI F, WANG H, GUO W J, ZHU Z, YAN F. Angew. Chem., Int. Ed., 2012, 51(19): 4607-4612.

    52. [52]

      ZHAO X L, XU L G, SUN M Z, MA W, WU X L, KUANG H, WANG L B, XU C L. Small, 2016, 12(34): 4662-4668.

    53. [53]

      ZHAO X L, LI S, XU L G, MA W, WU X L, KUANG H, WANG L B, XU C L. Biosens. Bioelectron., 2015, 70: 372-375.

    54. [54]

      XU Z, XU L G, LIZ-MARZAN L M, MA W, KOTOV N A, WANG L B, KUANG H, XU C L. Adv. Opt. Mater., 2013, 1(9): 626-630.

    55. [55]

      SUN M Z, HAO T T, LI X Y, QU A H, XU L G, HAO C L, XU C L, KUANG H. Nat. Commun., 2018, 9: 4494.

    56. [56]

      QU A H, WU X L, LI S, SUN M Z, XU L G, KUANG H, XU C L. Adv. Mater., 2020, 32(14): 1-9.

    57. [57]

      SHARMA B, FRONTIERA R R, HENRY A I, RINGE E, VAN D R P. Mater. Today, 2012, 15(1-2): 16-25.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    17. [17]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    20. [20]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

Metrics
  • PDF Downloads(0)
  • Abstract views(710)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return