Citation: SU Yong-huan,  CAI Jie,  YANG Ya-ni,  LIU Bing-qian. A Portable Sensor Based on DNA Walker Signal Amplification for Detection of Pb2+[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 525-534. doi: 10.19756/j.issn.0253-3820.201787 shu

A Portable Sensor Based on DNA Walker Signal Amplification for Detection of Pb2+

  • Corresponding author: LIU Bing-qian, nqliu@gzu.edu.cn
  • Received Date: 24 December 2020
    Revised Date: 22 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 21864007, 21605029)the Guizhou Provincial Natural Science Foundation(Nos. Qian Ke He Ji Chu [2020]1Y042, Qian Ke He Platform for Talents [2017]5788, Qian Ke He Platform for Talents [2018]5781)

  • A sensitive and convenient sensor for detection of Pb2+ was established based on the specific recognition of Pb2+ and substrate DNA(sDNA), coupling with Fe3O4 nano-magnetic beads(MB) as sensor platform, portable glucose meter(PGM) as signal capture terminal and DNA walking device as signal amplification strategy. The nanogold-functionalized Poly(amidoamine() Au/PAMAM) dendrimers prepared by reduction method were modified by glucose oxidase(GOx) and sDNA to form sDNA/GOx/Au/PAMAM complex. Based on the complementary base pairing principle, the sDNA/GOx/Au/PAMAM complex was captured on the MB modified by capture DNA(c DNA), and the DNA enzymes(DNAzyme) could bind to the un-paired parts of sDNA. In the presence of target, Pb2+ could specifically recognize cleavage sites on sDNA and shear it, meanwhile released DNAzyme and GOx/Au/PAMAM. The former continued to bind with the next sDNA, and then the new identification-split-release circulation was opened.The circulation could be called DNA walker device, and the release quantity of GOx/Au/PAMAM was increased to realize signal amplification. The supernatant(GOx/Au/PAMAM), separated by magnetic separation, could oxidize glucose(Glu) in the reaction solution, and the change value of Glu concentration was monitored with PGM, thus indirectly detecting the target Pb2+ concentration. Under the optimal conditions, the PGM response of the system showed a good linear relationship with the logarithm of Pb2+ concentration ranging from 1.00 pmol/L to 1.00 μmol/L, and the detection limit was 0.66 pmol/L.
  • 加载中
    1. [1]

      HE W, LUO L, LIU Q, CHEN Z. Anal. Chem., 2018, 90(7):4770-4775.

    2. [2]

      LIN W, LI Z, BURNS M. Anal. Chem., 2017, 89(17):8748-8756.

    3. [3]

      CHEN C, HUANG W. J. Am. Chem. Soc., 2002, 124(22):6246-6247.

    4. [4]

      KAVALLIERATOS K, ROSENBERG J, CHEN W, REN T. J. Am. Chem. Soc., 2005, 127(18):6514-6515.

    5. [5]

      DUAN N, LI C, SONG M, WANG Z, ZHU C, WU S. Spectrochim. Acta, Part A, 2022, 265(15):120342.

    6. [6]

      BABU S, KUMAR K, SUVARDHAN K, KIRAN K, REKHA D, KRISHNAIAH L, JANARDHANAM K,CHIRANJEEVI P. Environ. Monit. Assess., 2007, 128:241-249.

    7. [7]

      COCHERIE A, ROBERT M. Chem. Geol., 2007, 243:90-104.

    8. [8]

      MORTADA W I, KENAWY I M, ABDELGHANY A M, ISMAL A M, DONIA A F, NABIEH K A. Mater. Sci. Eng.C, 2015, 52(1):288-296.

    9. [9]

      LIU S, SUN J, HUO J, DUAN X, LIU Y. Anal. Sci., 2019, 35(5):499-504.

    10. [10]

      SUN Q, WANG J, TANG M, HUANG L, ZHANG Z, LIU C, LU X, HUNTER K W, CHEN G. Anal. Chem., 2017,89(9):5024-5029.

    11. [11]

    12. [12]

      MALIK L, BASHIR A, QUREASHI A, PANDITH A. Environ. Chem. Lett., 2019, 17:1495-1521.

    13. [13]

      ZHAO G, LIU G. IEEE Sens. J., 2018, 18(14):5645-5655.

    14. [14]

      LU W, LIN C, YANG J, WANG X, YAO B, WANG M. Anal. Bioanal. Chem., 2019, 411(21):5383-5391.

    15. [15]

      TANG D, TANG J, SU B, CHEN G. Biosens. Bioelectron., 2011, 26(5):2090-2096.

    16. [16]

      TANG J, HUANG Y, ZHANG C, LIU H, TANG D. Biosens. Bioelectron., 2016, 86:386-392.

    17. [17]

      YUAN Y, ZHANG G, LI Y, ZHANG G, ZHANG F, FAN X. Polym. Chem., 2013, 4(6):2164-2167.

    18. [18]

      QIU Z, TANG D, SHU J, CHEN G, TANG D. Biosens. Bioelectron., 2016, 75:108-115.

    19. [19]

      AN Y, JIANG X, BI W, CHEN H, JIN L, ZHANG S, WANG C, ZHANG W. Biosens. Bioelectron., 2012, 32(1):224-230.

    20. [20]

      HOU Y, WANG J, JIANG Y, LV C, XIA L, HONG S, LIN M, LIN Y, ZHANG Z, PANG D. Biosens. Bioelectron.,2018, 99:186-192.

    21. [21]

      WANG W, LI J, DONG C, LI Y, KOU Q, YAN J, ZHANG L. Anal. Chim. Acta, 2018, 1042(26):116-124.

    22. [22]

      SHU B, ZHANG C, XING D. Biosens. Bioelectron., 2017, 97:360-368.

    23. [23]

      WEI M, WANG C, XU E, CHEN J, XU X, WEI W, LIU S. Food Chem., 2019, 282(1):141-146.

    24. [24]

      LIU J, HU Q, QI L, LIN J, LI Y. J. Hazard. Mater., 2020, 400(5):123218.

    25. [25]

      WANG K, HE M, ZHAI F, WANG J, HE R, YU Y. Biosens. Bioelectron., 2018, 105:159-165.

    26. [26]

      YANG F, ZHONG X, JIANG X, ZHUO Y, YUAN R, WEI S. Biosens. Bioelectron., 2019, 130:262-268.

    27. [27]

      CHANG Y, WU Z, SUN Q, ZHUO Y, CHAI Y, YUAN R. Anal. Chem., 2019, 91(13):8123-8128.

    28. [28]

      LIU X, NIAZOV-ELKAN A, WANG F, WILLNER I. Nano Lett., 2013, 13(1):219-225.

    29. [29]

      DELIUS D, GEERTSEMA E M, LEIGH D A, TANG D D. J. Am. Chem. Soc., 2010, 132(45):16134-16145.

    30. [30]

      WANG C, REN J, QU X. Chem. Commun., 2011, 47(5):1428-1430.

    31. [31]

      XU Q, ZHANG Y, ZHANG C. Chem. Commun., 2015, 51(26):5652-5655.

    32. [32]

      WANG Y, SONG W, ZHAO H, MA X, YANG S, QIAO X, SHENG Q, YUE T. Biosens. Bioelectron., 2021, 182:113171.

    33. [33]

      YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.

    34. [34]

      ESUMI K, SHINTARO AKIYAMA A, YOSHIMURA T. Langmuir, 2003, 19(18):7679-7681.

    35. [35]

    36. [36]

      CAO L, ZHANG Q, DAI H, FU Y, LI Y. Electroanalysis, 2018, 30(3):517-524.

    37. [37]

      FANG J, GUO Y, YANG Y, YU W, TAO Y, DAI T, YUAN C, XIE G. Sens. Actuators, B, 2018, 272(1):118-126

    38. [38]

      LU L, SI J, GAO Z, ZHANG Y, LEI J, LUO H, LI N. Biosens. Bioelectron., 2015, 63:14-20.

    39. [39]

      ZHANG J, TANG Y, TENG L, LU M, TANG D. Biosens. Bioelectron., 2015, 68:232-238.

    40. [40]

      SU P G, TZOU W H. Sens. Actuators, A, 2012, 179:44-49.

    41. [41]

      SANCHES E A, SOARES J C, IOST R M, MARANGONI V S, TROVATI G, BATISTA T, MAFUD A C,ZUCOLOTTO V, MASCARENHAS Y P. J. Nanomater., 2011, 2011:73-79.

    42. [42]

      LIN Y, ZHOU Q, LIN Y, TANG D, NIESSNER R, KNOPP D. Anal. Chem., 2015, 87(16):8531-8540.

    43. [43]

      WRIGHT A K, THOMPSON M R. Biophys. J., 1975, 15(2):137-141.

    44. [44]

      EBRAHIMI A, RAVAN H, MEHRABANI M. Biosens. Bioelectron., 2020, 170:112710.

    45. [45]

      LI W, GAO Y, ZHANG J, WANG X, YIN F, LI Z, ZHANG M. Nanoscale Adv., 2020, 2(2):717-723.

    46. [46]

    47. [47]

      FANG X, LIU Y, JIMENEZ L, DUAN Y, ADKINS G B, QIAO L, LIU B, ZHONG W. Anal. Chem., 2017, 89(21):11758-11764.

    48. [48]

      YU Y, YU C, NIU Y, CHEN J, ZHAO Y, ZHANG Y, GAO R, HE J. Biosens. Bioelectron., 2018, 101:297-303.

    49. [49]

      TANG W, YU J, WANG Z, JEERAPAN I, YIN L, ZHANG F, HE P. Anal. Chim. Acta, 2019, 1078(31):1078:53-59.

    50. [50]

      SHI Y, WANG H, JIANG X, SUN B, SONG B, SU Y, HE Y. Anal. Chem., 2016, 88(7):3723-3729.

    51. [51]

      JIANG D, DU X, CHEN D, ZHOU L, CHEN W, LI Y, HAO N, QIAN J, LIU Q, WANG K. Biosens. Bioelectron.,2016, 83:149-155.

    52. [52]

      WANG X, YANG C, ZHU S, YAN M, GE S, YU J. Biosens. Bioelectron., 2017, 87:108-115.

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    12. [12]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    13. [13]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    14. [14]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    15. [15]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    16. [16]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    17. [17]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    18. [18]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    19. [19]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(4)
  • Abstract views(425)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return