Citation: WANG Dan,  QIU Wan-Ya,  YU Shi-Yu,  LIU Zhi-Min,  ZHANG Xue-Hua,  XU Zhi-Gang,  ZHU Rui-Zhi,  ZHANG Feng-Mei,  SI Xiao-Xi,  LIU Zhi-Hua. Simultaneous Analysis of Ascorbic Acid, Uric Acid and Xanthine in Human Urine by Column Tandem Technique[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1919-1925. doi: 10.19756/j.issn.0253-3820.201754 shu

Simultaneous Analysis of Ascorbic Acid, Uric Acid and Xanthine in Human Urine by Column Tandem Technique

  • Corresponding author: XU Zhi-Gang,  SI Xiao-Xi, 
  • Received Date: 12 December 2020
    Revised Date: 24 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21565018), the China National Tobacco Corporation Science and Technology Major Special Project (No.110201901002(XX-02)) and the Yunnan China Tobacco Industry Co., Ltd. Key Project (No.2018JC05).

  • Ascorbic acid, uric acid and xanthine in human urine are important markers of many diseases. A method for simultaneous detection of ascorbic acid, uric acid and xanthine in human urine by high performance liquid chromatography based on column tandem technique was established. The separation of these three compounds was the key to simultaneously analyze the three compounds to a certain extent because the conventional liquid chromatography could not effectively separate these highly polar substances simultaneously. The Innoval ASB C18 was coupled with the hydrophilic interaction chromatography (HILIC) column to trigger off a dual-column series separation mode. The separation performance of the two columns was complementary to achieve baseline separation of the three target analytes. The results showed that a single HILIC column could not achieve the baseline separation of the three analytes. The C18 column also showed very weak retention to the three analytes. The retention time was so early that the target analyte peaks might be interfered by the solvent peaks. Only the tandem of these two columns could achieve the baseline separation for the three analytes. Ultimately, an analytical method for simultaneous analysis of ascorbic acid, uric acid and xanthine in human urine with the C18 column tandem HILIC column was established. The correlation coefficient was good in the linear range of 0.005-20 mg/L, and limits of detection (LODs) of ascorbic acid, uric acid, and xanthine were 1.06 μg/L, 0.94 μg/L and 0.46 μg/L, respectively. The three target analytes could be found in actual human urine by the proposed method. The contents of ascorbic acid, uric acid and xanthine were 0.47-4.70, 6.91-8.01 and 0.10-0.19 mg/L, respectively. The recoveries of the spiked urine samples were 86.2%-117.9%, and the relative standard deviation (RSD) was less than 9.3%. The established high performance liquid chromatography based on column tandem analytical method was simple, fast and efficient, and could be used for separation and simultaneous determination of ascorbic acid, uric acid and xanthine in human urine.
  • 加载中
    1. [1]

      HUSSAIN M M, ASIRI A M, RAHMAN M M. Microchem. J., 2020, 159:105534.

    2. [2]

      ABELLAN-LLOBREGAT A, VIDAL L, RODRÍGUEZ-AMARO R, BERENGUER-MURCIA A, CANALS A, MORALLÓN E. Electrochim. Acta, 2017, 227:275-284.

    3. [3]

      SEN S, SARKAR P. Anal. Chim. Acta, 2020, 1114:15-28.

    4. [4]

      JINDAL K, TOMAR M, GUPTA V. Biosens. Bioelectron., 2014, 55(9):57-65.

    5. [5]

      FEIG D I, KANG D H, JOHNSON R J. N. Engl. J. Med., 2008, 359(17):1811-1821.

    6. [6]

      IBRAHIM H, TEMERK Y. J. Electroanal. Chem., 2016, 780:176-186.

    7. [7]

      WANG X X, WU Q, SHAN Z, HUANG Q M. Biosens. Bioelectron., 2011, 26(8):3614-3619.

    8. [8]

      WESTLEY C, XU Y, THILAGANATHAN B, CARNELL A J, TURNER N J, GOODACRE R. Anal. Chem., 2017, 89(4):2472-2477.

    9. [9]

      FOWLER A A, SYED A A, KNOWLSON S, SCULTHORPE R, FARTHING D, DEWILDE C, FARTHING C A, LARUS T L, MARTIN E, BROPHY D F, GUPTA S, RESPIRATORY M, NURSING I C U, FISHER B J, NATARAJAN R. J. Transl. Med., 2014, 12(1):32.

    10. [10]

    11. [11]

      ZHANG F Y, WANG Z H, ZHANG Y Z, ZHENG Z X, WANG C M, DU Y L, YE W H. Talanta, 2012, 93:320-325.

    12. [12]

      HASOÑ S, OSTATNÁ V, FOJTA M. Electrochim. Acta, 2020, 329:135132.

    13. [13]

    14. [14]

      BADOEI-DALFARD A, SOHRABI N, KARAMI Z, SARGAZI G. Biosens. Bioelectron., 2019, 141:111420.

    15. [15]

      COOPER N, KHOSRAVAN R, ERDMANN C, FIENE J, LEE J W. J. Chromatogr. B, 2006, 837(1-2):1-10.

    16. [16]

    17. [17]

    18. [18]

      SUN D, ZHANG Y, WANG F R, WU K B, CHEN J W, ZHOU Y K. Sens. Actuators, B, 2009, 141(2):641-645.

    19. [19]

      ABELLÁN-LLOBREGAT A, VIDAL L, RODRÍGUEZ-AMARO R, BERENGUER-MURCIA Á, CANALS A, MORALLÓN E. Electrochim. Acta, 2017, 227:275-284.

    20. [20]

      PLESKACOVA A, BREICHA S, PACAL L, KANKOVA K, TOMANDL J.Chromatographia, 2017, 80:529-536.

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    13. [13]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    18. [18]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    19. [19]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    20. [20]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

Metrics
  • PDF Downloads(10)
  • Abstract views(1046)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return