Citation: WEI Chun-Hao,  YANG Guang-Xin,  CHI Hai,  TAO Le-Ren,  KONG Cong,  CAI You-Qiong. Inner Filter Effect-based Fluorescence Immunoassay with GoldNanoclusters for Malachite Green Detection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 73-81. doi: 10.19756/j.issn.0253-3820.201750 shu

Inner Filter Effect-based Fluorescence Immunoassay with GoldNanoclusters for Malachite Green Detection

  • Corresponding author: YANG Guang-Xin,  CHI Hai, 
  • Received Date: 11 December 2020
    Revised Date: 9 June 2021

    Fund Project: Supported by Central Public-interest Scientific Institution Based Research Fund (No.2016T09)

  • Malachite green (MG), an effective insecticide and preservative, is commonly used in the aquaculture industry. However, MG has acute toxicity to terrestrial and aquatic animals, which can lead to mutagenicity, carcinogenicity, and teratogenicity on animals and human bodies. Therefore, it is necessary to explore a reliable and sensitive method for the rapid detection of MG. Herein, a novel and sensitive fluorescence-linked immunosorbent assay (FLISA) was constructed based on glod nanoclusters (BSA-AuNCs) for MG detection. The assay signal was originated from inner filter effect (IFE) between BSA-AuNCs and p-nitrophenol (PNP). Firstly, a double emission peak fluorescent gold nanocluster with good light stability and ultra-small size was quickly synthesized in 7 minutes, which was used as fluorescence probe in this immunoassay. Secondary, alkaline phosphatase labeled secondary antibody (IgG-ALP) was used to replace IgG-HRP in the immune reaction, which could generate PNP with the substrate of p-nitrophenyl phosphate (PNPP). As the maximum excitation wavelength of BSA-AuNCs (390 nm) overlapped with the absorption peak of PNP (400 nm), the fluorescence of BSA-AuNCs could be strongly quenched by PNP. Thus, with the absence of MG in the indirect immunoassay, much more IgG-ALP would be adsorbed in the 96-well plates, more PNP would be produced, then with the fluorescence quenched more strongly. The fluorescence signal could be used for MG detection indirectly. In this immunoassay, several factors including coating antigen, antibody concentration, secondary antibody concentration, substrate concentration, reaction temperature and reaction time were optimized. Under the optimized conditions, the linear range of this method was 0.1-100 ng/mL, linear equation was y=181.53lgCMG+241.3 (R2=0.995), and the limit of detection (LOD) was 0.089 ng/mL. The sensitivity of FLISA was 30 times that of ic-ELISA. Furthermore, the proposed method was successfully applied to determination of MG in spiked aquaculture water and tap water. The recoveries of MG were in the range of 84.0%-110.2%, and the coefficient of variation was 4.6%-11.2%. The new immunoassay could be used as a promising tool for rapid detection of MG in real environmental samples.
  • 加载中
    1. [1]

      WU L, LIN Z Z, ZHONG H P, PENG A H, CHEN X M, HUANG Z Y. Food Chem., 2017, 229:847-853.

    2. [2]

      SAHRAEI R, FARMANY A, MORTAZAVI S S, NOORIZADEH H. Environ. Monit. Assess., 2013, 185:5817-5822.

    3. [3]

      ZHANG Y Y, HUANG Y Q, ZHAI F L, DU R, LIU Y D, LAI K Q. Food Chem., 2012, 135(2):845-850.

    4. [4]

      ZHANG K, SONG G, YANG L X. Anal. Methods, 2012, 4(12):4257-4263.

    5. [5]

      LIN Z Z, ZHANG H Y, PENG A H, LIN Y D, LI L, HUANG Y. Food Chem., 2016, 200:32-37.

    6. [6]

      JIA F, YANG X D, LI Z Y. RSC Adv., 2016, 6:92723-92728.

    7. [7]

      XIE J, PENG T, CHEN D D, ZHANG Q J, WANG G M, WANG X, QI G, JIANG F, CHEN D, DENG J. J. Chromatogr. B, 2013, 913:123-128.

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      GUO Y R, ZOU R B, SI F F, LIANG W L, ZHANG T Y, CHANG Y Y, QIAO X S, ZHAO J H. Food Chem., 2020, 335:127609-127617.

    12. [12]

      ZHAO M T, LI X L, ZHANG Y L, WANG Y W, WANG B, ZHENG L L, ZHANG D W, ZHUANG S L. Food Chem., 2020, 339:127857-127864.

    13. [13]

      ZHANG C, JIANG Z J, JIN M J, DU P F, CHEN G, CUI X Y, ZHANG Y D, QIN G X, YAN F Y, EL-ATY A M A, HACIMVFTVOǦLU A, WANG J. Food Chem., 2020, 326:126813-126820.

    14. [14]

      CHEN S, YU Y L, WANG J H. Anal. Chim. Acta, 2018, 999:13-26.

    15. [15]

      DONG B L, LI H F, MARI G M, YU X Z, YU W B, WEN K, KE Y B, SHEN J Z, WANG Z H. Food Chem., 2019, 294:347-354.

    16. [16]

      LUO L, SONG Y, ZHU C Z, FU S F, SHI Q R, SUN Y M, JIA B Z, DU D, XU Z L, LIN Y H. Sens. Actuators, B, 2018, 255(3):2742-2749.

    17. [17]

      CUI M L, YUAN Z, SONG Q J. TrAC-Trends Anal. Chem., 2014, 57:73-82.

    18. [18]

    19. [19]

      XIE J P, ZHENG Y G, YING J Y. J. Am. Chem. Soc., 2009, 131(3):888-889.

    20. [20]

      LI H F, WEN K, DONG B L, ZHANG J, BAI Y C, LIU M G, LI P P, MUJTABA G M, YU X Z, YU W B,KE Y B, SHEN J Z, WANG Z H. Sens. Actuators, B, 2019, 297:126787-126796.

    21. [21]

    22. [22]

      JU Y J, LI N, LIU S G, HAN L, XIAO N, LUO H Q, LI N B. Sens. Actuators, B, 2018, 275:244-250.

    23. [23]

      LIU H Y, ZHANG X, WU X M, JIANG L P, BURDA C, ZHU J J. Chem. Commun., 2011, 47(14):4237-4239.

    24. [24]

      KONG Y F, CHEN J, GAO F, BRYDSON R, JOHNSON B, HEATH G, ZHANG Y, WU L, ZHOU D J. Nanoscale, 2013, 5(3):1009-1017.

    25. [25]

      HSUA N Y, LIN Y W. New J. Chem., 2016, 40(2):1155-1161.

    26. [26]

    27. [27]

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    12. [12]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

Metrics
  • PDF Downloads(8)
  • Abstract views(814)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return