Citation:
REN Lin-Jiao, PENG Zheng, MENG Xiao-Long, ZHANG Pei, QIN Zi-Rui, XU Xiao-Ping, XU Peng, JIANG Li-Ying. A Split-Aptamer Sensor for Detection of Adenosine Triphosphate Based on Gold Nanoparticles[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 405-412.
doi:
10.19756/j.issn.0253-3820.201749
-
A split aptamer sensor based on gold nanoparticles (AuNPs) was constructed for detection of adenosine triphosphate (ATP). The ATP aptamer was splited into two fragments (P1 and P2), of which the 5' end of P1 fragment was modified by carboxyfluorescein (FAM) fluorophore, while the P2 fragment with 3' end thiol-functionalization was modified on the AuNPs surface through the self-assembly method by Au-S bond. It was found that the P1 and P2 fragments could not combine together before adding ATP, and the distance between P1 fragments and AuNPs was relatively far, which resulted in strong fluorescence signal. However, after adding ATP into the sensing system, the sandwich structure of P1-ATP-P2 formed, and the FAM fluorophore in the 5' end of P1 fragments approached to the AuNPs, leading to the decrease of the fluorescence intensity due to fluorescence resonance energy transfer effect. Under optimal experimental conditions, the fluorescence intensity of the sensor showed linear relationship with ATP concentration in the range of 0.03-3.33 nmol/L and 3.33-15 nmol/L, respectively, with a detection limit (S/N=3) of 0.03 nmol/L. Furthermore, the constructed sensor had excellent specificity for detection of ATP.
-
-
-
[1]
XUE N, WU S J, LI Z B, MIAO X M. Anal. Chim. Acta, 2020, 1104:117-124.
-
[2]
YE X M, HUANG A F, WANG X Q, WEN C C, HU L F, LIN G Y. Biomed. Res. Int., 2018, 2018:3128270.
-
[3]
HUANG Y H, ZHANG S P, CHEN Y, WANG L, LONG Z J, HUGHES S S, NI S J, CHENG X, WANG J J,LI T, WANG R, LIU C. J. Hazard. Mater., 2020, 385:1-9.
-
[4]
TIAN H L, DUAN N, WU S J, WANG Z P. Anal. Chim. Acta, 2019, 1081:168-175.
-
[5]
CHEN A L, YAN M M, YANG S M. TrAC-Trends Anal. Chem., 2016, 80:581-593.
-
[6]
TORRINI F, PALLADINO P, BRITTOLI A, BALDONESCHI V, MINUNNI M, SCARANO S. Anal. Bioanal. Chem., 2019, 411(29):7709-7716.
-
[7]
STOJANOVIC M N, DE PRADA P, LANDRY D W. J. Am. Chem. Soc., 2000, 122(46):11547-11548.
-
[8]
WU J F, GAO X, GE L, ZHAO G C, WANG G F. RSC Adv., 2019, 9(34):19813-19818.
-
[9]
HU K, HUANG Y, WANG S G, ZHAO S L. J. Pharmaceut. Biomed., 2014, 95:164-168.
-
[10]
BAI Y F, FENG F, ZHAO L, CHEN Z Z, WANG H Y, DUAN Y L. Analyst, 2014, 139(8):1843-1846.
-
[11]
WANG M K, CHEN J Y, SU D D, WANG G N, SU X G. Talanta, 2019, 198:1-7.
-
[12]
-
[13]
ZHOU S S, ZHANG L, CAI Q Y, DONG Z Z, GENG X, GE J, LI Z H. Anal. Bioanal. Chem., 2016, 408(24):6711-6717.
-
[14]
YANG C, SPINELLI N, PERRIER S, DEFRANCQ E, PEYRIN E. Anal. Chem., 2015, 87(6):3139-3143.
-
[15]
ZHENG X F, PENG R Z, JIANG X, WANG Y Y, XU S, KE G L, FU T, LIU Q L, HUAN S Y, ZHANG X B. Anal. Chem., 2017, 89(20):10941-10947.
-
[16]
MA Y, GENG F H, WANG Y X, XU M T, SHAO C Y, QU P, ZHANG Y T, YE B X. Biosens. Bioelectron., 2019, 134:36-41.
-
[17]
LI X M, WANG Y, LUO J, AI S Y. Sens. Actuators, B, 2016, 228:509-514.
-
[18]
XIONG Y, CHENG Y, WANG L, LI Y. Talanta, 2018, 190:226-234.
-
[19]
SUN N, GUO Q, SHAO J W, QIU B, LIN Z Y, WONG K Y, CHEN G N. Anal. Methods, 2014, 6(10):3370-3374.
-
[20]
WANG W J, LV W Y, PAN Z Y, ZHAN L, HUANG C Z. Anal. Methods, 2020, 12(7):970-976.
-
[21]
KARIMI M A, DADMEHR M, HOSSEINI M, KOROUZHDEHI B, OROOJALIAN F. RSC Adv., 2019, 9(21):12063-12069.
-
[22]
CHEN H, ZOU Y, JIANG X, CAO F Q, LIU W B. RSC Adv., 2019, 9(63):36884-36889.
-
[23]
LIM D K, JEON K S, HWANG J H, KIM H, KWON S, SUH Y D, NAM J M. Nat. Nanotechnol., 2011, 6(7):452-460.
-
[24]
LIU J W, LU Y. Nat. Protoc., 2006, 1(1):246-252.
-
[25]
ZHANG J, SONG S P, WANG L H, PAN D, FAN C H. Nat. Protoc., 2007, 2(11):2888-2895.
-
[26]
ZHENG T Y, SIP Y Y L, LEONG M B, HUO Q. Colloids Surf. B, 2018, 164:185-191.
-
[27]
LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(39):14036-14039.
-
[28]
ZHANG X, SERVOS MARK R, LIU J W. J. Am. Chem. Soc., 2012, 134(17):7266-7269.
-
[1]
-
-
-
[1]
Dingwen CHEN , Siheng YANG , Haiyan FU , Hua CHEN , Xueli ZHENG , Weichao XUE , Jiaqi XU , Ruixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053
-
[2]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[3]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[4]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[5]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[6]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[7]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[8]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[9]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[10]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[11]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[12]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[13]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[14]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[15]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[16]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[17]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[18]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[19]
Lin LI , Le CHEN , Lingjie HOU , Jiaqi JING , Jiayu DING , Tao ZHOU , Ruiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130
-
[20]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(1380)
- HTML views(311)
Login In
DownLoad: