Citation:
REN Lin-Jiao, PENG Zheng, MENG Xiao-Long, ZHANG Pei, QIN Zi-Rui, XU Xiao-Ping, XU Peng, JIANG Li-Ying. A Split-Aptamer Sensor for Detection of Adenosine Triphosphate Based on Gold Nanoparticles[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 405-412.
doi:
10.19756/j.issn.0253-3820.201749
-
A split aptamer sensor based on gold nanoparticles (AuNPs) was constructed for detection of adenosine triphosphate (ATP). The ATP aptamer was splited into two fragments (P1 and P2), of which the 5' end of P1 fragment was modified by carboxyfluorescein (FAM) fluorophore, while the P2 fragment with 3' end thiol-functionalization was modified on the AuNPs surface through the self-assembly method by Au-S bond. It was found that the P1 and P2 fragments could not combine together before adding ATP, and the distance between P1 fragments and AuNPs was relatively far, which resulted in strong fluorescence signal. However, after adding ATP into the sensing system, the sandwich structure of P1-ATP-P2 formed, and the FAM fluorophore in the 5' end of P1 fragments approached to the AuNPs, leading to the decrease of the fluorescence intensity due to fluorescence resonance energy transfer effect. Under optimal experimental conditions, the fluorescence intensity of the sensor showed linear relationship with ATP concentration in the range of 0.03-3.33 nmol/L and 3.33-15 nmol/L, respectively, with a detection limit (S/N=3) of 0.03 nmol/L. Furthermore, the constructed sensor had excellent specificity for detection of ATP.
-
-
-
[1]
XUE N, WU S J, LI Z B, MIAO X M. Anal. Chim. Acta, 2020, 1104:117-124.
-
[2]
YE X M, HUANG A F, WANG X Q, WEN C C, HU L F, LIN G Y. Biomed. Res. Int., 2018, 2018:3128270.
-
[3]
HUANG Y H, ZHANG S P, CHEN Y, WANG L, LONG Z J, HUGHES S S, NI S J, CHENG X, WANG J J,LI T, WANG R, LIU C. J. Hazard. Mater., 2020, 385:1-9.
-
[4]
TIAN H L, DUAN N, WU S J, WANG Z P. Anal. Chim. Acta, 2019, 1081:168-175.
-
[5]
CHEN A L, YAN M M, YANG S M. TrAC-Trends Anal. Chem., 2016, 80:581-593.
-
[6]
TORRINI F, PALLADINO P, BRITTOLI A, BALDONESCHI V, MINUNNI M, SCARANO S. Anal. Bioanal. Chem., 2019, 411(29):7709-7716.
-
[7]
STOJANOVIC M N, DE PRADA P, LANDRY D W. J. Am. Chem. Soc., 2000, 122(46):11547-11548.
-
[8]
WU J F, GAO X, GE L, ZHAO G C, WANG G F. RSC Adv., 2019, 9(34):19813-19818.
-
[9]
HU K, HUANG Y, WANG S G, ZHAO S L. J. Pharmaceut. Biomed., 2014, 95:164-168.
-
[10]
BAI Y F, FENG F, ZHAO L, CHEN Z Z, WANG H Y, DUAN Y L. Analyst, 2014, 139(8):1843-1846.
-
[11]
WANG M K, CHEN J Y, SU D D, WANG G N, SU X G. Talanta, 2019, 198:1-7.
-
[12]
-
[13]
ZHOU S S, ZHANG L, CAI Q Y, DONG Z Z, GENG X, GE J, LI Z H. Anal. Bioanal. Chem., 2016, 408(24):6711-6717.
-
[14]
YANG C, SPINELLI N, PERRIER S, DEFRANCQ E, PEYRIN E. Anal. Chem., 2015, 87(6):3139-3143.
-
[15]
ZHENG X F, PENG R Z, JIANG X, WANG Y Y, XU S, KE G L, FU T, LIU Q L, HUAN S Y, ZHANG X B. Anal. Chem., 2017, 89(20):10941-10947.
-
[16]
MA Y, GENG F H, WANG Y X, XU M T, SHAO C Y, QU P, ZHANG Y T, YE B X. Biosens. Bioelectron., 2019, 134:36-41.
-
[17]
LI X M, WANG Y, LUO J, AI S Y. Sens. Actuators, B, 2016, 228:509-514.
-
[18]
XIONG Y, CHENG Y, WANG L, LI Y. Talanta, 2018, 190:226-234.
-
[19]
SUN N, GUO Q, SHAO J W, QIU B, LIN Z Y, WONG K Y, CHEN G N. Anal. Methods, 2014, 6(10):3370-3374.
-
[20]
WANG W J, LV W Y, PAN Z Y, ZHAN L, HUANG C Z. Anal. Methods, 2020, 12(7):970-976.
-
[21]
KARIMI M A, DADMEHR M, HOSSEINI M, KOROUZHDEHI B, OROOJALIAN F. RSC Adv., 2019, 9(21):12063-12069.
-
[22]
CHEN H, ZOU Y, JIANG X, CAO F Q, LIU W B. RSC Adv., 2019, 9(63):36884-36889.
-
[23]
LIM D K, JEON K S, HWANG J H, KIM H, KWON S, SUH Y D, NAM J M. Nat. Nanotechnol., 2011, 6(7):452-460.
-
[24]
LIU J W, LU Y. Nat. Protoc., 2006, 1(1):246-252.
-
[25]
ZHANG J, SONG S P, WANG L H, PAN D, FAN C H. Nat. Protoc., 2007, 2(11):2888-2895.
-
[26]
ZHENG T Y, SIP Y Y L, LEONG M B, HUO Q. Colloids Surf. B, 2018, 164:185-191.
-
[27]
LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(39):14036-14039.
-
[28]
ZHANG X, SERVOS MARK R, LIU J W. J. Am. Chem. Soc., 2012, 134(17):7266-7269.
-
[1]
-
-
-
[1]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[2]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[3]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[4]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[5]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[6]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[7]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[8]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[9]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[10]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[11]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[12]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[13]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[16]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[17]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[18]
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
-
[19]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[20]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[1]
Metrics
- PDF Downloads(12)
- Abstract views(986)
- HTML views(257)