Citation: REN Lin-Jiao,  PENG Zheng,  MENG Xiao-Long,  ZHANG Pei,  QIN Zi-Rui,  XU Xiao-Ping,  XU Peng,  JIANG Li-Ying. A Split-Aptamer Sensor for Detection of Adenosine Triphosphate Based on Gold Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 405-412. doi: 10.19756/j.issn.0253-3820.201749 shu

A Split-Aptamer Sensor for Detection of Adenosine Triphosphate Based on Gold Nanoparticles

  • Corresponding author: ZHANG Pei,  JIANG Li-Ying, 
  • Received Date: 11 December 2020
    Revised Date: 6 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.62073299, 61801436), the Henan University Science and Technology Innovation Team Project (No.20IRTSTHN017), the Henan Province Key Research and Development and Promotion Projects (No.202102210186) and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (No.21A410001).

  • A split aptamer sensor based on gold nanoparticles (AuNPs) was constructed for detection of adenosine triphosphate (ATP). The ATP aptamer was splited into two fragments (P1 and P2), of which the 5' end of P1 fragment was modified by carboxyfluorescein (FAM) fluorophore, while the P2 fragment with 3' end thiol-functionalization was modified on the AuNPs surface through the self-assembly method by Au-S bond. It was found that the P1 and P2 fragments could not combine together before adding ATP, and the distance between P1 fragments and AuNPs was relatively far, which resulted in strong fluorescence signal. However, after adding ATP into the sensing system, the sandwich structure of P1-ATP-P2 formed, and the FAM fluorophore in the 5' end of P1 fragments approached to the AuNPs, leading to the decrease of the fluorescence intensity due to fluorescence resonance energy transfer effect. Under optimal experimental conditions, the fluorescence intensity of the sensor showed linear relationship with ATP concentration in the range of 0.03-3.33 nmol/L and 3.33-15 nmol/L, respectively, with a detection limit (S/N=3) of 0.03 nmol/L. Furthermore, the constructed sensor had excellent specificity for detection of ATP.
  • 加载中
    1. [1]

      XUE N, WU S J, LI Z B, MIAO X M. Anal. Chim. Acta, 2020, 1104:117-124.

    2. [2]

      YE X M, HUANG A F, WANG X Q, WEN C C, HU L F, LIN G Y. Biomed. Res. Int., 2018, 2018:3128270.

    3. [3]

      HUANG Y H, ZHANG S P, CHEN Y, WANG L, LONG Z J, HUGHES S S, NI S J, CHENG X, WANG J J,LI T, WANG R, LIU C. J. Hazard. Mater., 2020, 385:1-9.

    4. [4]

      TIAN H L, DUAN N, WU S J, WANG Z P. Anal. Chim. Acta, 2019, 1081:168-175.

    5. [5]

      CHEN A L, YAN M M, YANG S M. TrAC-Trends Anal. Chem., 2016, 80:581-593.

    6. [6]

      TORRINI F, PALLADINO P, BRITTOLI A, BALDONESCHI V, MINUNNI M, SCARANO S. Anal. Bioanal. Chem., 2019, 411(29):7709-7716.

    7. [7]

      STOJANOVIC M N, DE PRADA P, LANDRY D W. J. Am. Chem. Soc., 2000, 122(46):11547-11548.

    8. [8]

      WU J F, GAO X, GE L, ZHAO G C, WANG G F. RSC Adv., 2019, 9(34):19813-19818.

    9. [9]

      HU K, HUANG Y, WANG S G, ZHAO S L. J. Pharmaceut. Biomed., 2014, 95:164-168.

    10. [10]

      BAI Y F, FENG F, ZHAO L, CHEN Z Z, WANG H Y, DUAN Y L. Analyst, 2014, 139(8):1843-1846.

    11. [11]

      WANG M K, CHEN J Y, SU D D, WANG G N, SU X G. Talanta, 2019, 198:1-7.

    12. [12]

    13. [13]

      ZHOU S S, ZHANG L, CAI Q Y, DONG Z Z, GENG X, GE J, LI Z H. Anal. Bioanal. Chem., 2016, 408(24):6711-6717.

    14. [14]

      YANG C, SPINELLI N, PERRIER S, DEFRANCQ E, PEYRIN E. Anal. Chem., 2015, 87(6):3139-3143.

    15. [15]

      ZHENG X F, PENG R Z, JIANG X, WANG Y Y, XU S, KE G L, FU T, LIU Q L, HUAN S Y, ZHANG X B. Anal. Chem., 2017, 89(20):10941-10947.

    16. [16]

      MA Y, GENG F H, WANG Y X, XU M T, SHAO C Y, QU P, ZHANG Y T, YE B X. Biosens. Bioelectron., 2019, 134:36-41.

    17. [17]

      LI X M, WANG Y, LUO J, AI S Y. Sens. Actuators, B, 2016, 228:509-514.

    18. [18]

      XIONG Y, CHENG Y, WANG L, LI Y. Talanta, 2018, 190:226-234.

    19. [19]

      SUN N, GUO Q, SHAO J W, QIU B, LIN Z Y, WONG K Y, CHEN G N. Anal. Methods, 2014, 6(10):3370-3374.

    20. [20]

      WANG W J, LV W Y, PAN Z Y, ZHAN L, HUANG C Z. Anal. Methods, 2020, 12(7):970-976.

    21. [21]

      KARIMI M A, DADMEHR M, HOSSEINI M, KOROUZHDEHI B, OROOJALIAN F. RSC Adv., 2019, 9(21):12063-12069.

    22. [22]

      CHEN H, ZOU Y, JIANG X, CAO F Q, LIU W B. RSC Adv., 2019, 9(63):36884-36889.

    23. [23]

      LIM D K, JEON K S, HWANG J H, KIM H, KWON S, SUH Y D, NAM J M. Nat. Nanotechnol., 2011, 6(7):452-460.

    24. [24]

      LIU J W, LU Y. Nat. Protoc., 2006, 1(1):246-252.

    25. [25]

      ZHANG J, SONG S P, WANG L H, PAN D, FAN C H. Nat. Protoc., 2007, 2(11):2888-2895.

    26. [26]

      ZHENG T Y, SIP Y Y L, LEONG M B, HUO Q. Colloids Surf. B, 2018, 164:185-191.

    27. [27]

      LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(39):14036-14039.

    28. [28]

      ZHANG X, SERVOS MARK R, LIU J W. J. Am. Chem. Soc., 2012, 134(17):7266-7269.

  • 加载中
    1. [1]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    16. [16]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(12)
  • Abstract views(986)
  • HTML views(257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return