Citation: LIU Lu-Ying,  LIU Jin-Hui,  HU Xiao-Gang. Dispersive Solid-Phase Extraction Technology Based on Aptamer Modified Composite Nanofibers and Its Application in Detection of Ochratoxin A[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2096-2105. doi: 10.19756/j.issn.0253-3820.201728 shu

Dispersive Solid-Phase Extraction Technology Based on Aptamer Modified Composite Nanofibers and Its Application in Detection of Ochratoxin A

  • Corresponding author: HU Xiao-Gang, huxg@scnu.edu.cn
  • Received Date: 4 December 2020
    Revised Date: 17 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21775048, 21275058), the Natural Science Foundation of Guangdong Province (No.2017A030313060), the Science and Technology Program of Guangzhou (No.2013B091500093), the Science and Technology Program of Guangzhou (No.201904010166) and Youth Innovation Talents Project of Colleges and Universities in Guangdong Province,China(No.2018KQNCX178).

  • The chitosan-sodium alginate composite nanofibers were prepared by freeze-drying. The nanofibers had a uniform filamentous structure with a width of about 0.4 μm. The aptamer of ochratoxin A was immobilized on the surface of the fiber by chemical bonding to obtain the aptamer-modified chitosan-sodium alginate composite nanofiber, and the bonding amount of the aptamer could reach 2.3 μg/mg. It could be used as an adsorbent for dispersive solid phase extraction technology. The adsorbent showed good extraction ability and high selectivity for ochratoxin A, the extraction capacity was about 3.1 ng/mg, and the extraction amount was 2.44-12.8 times of the structural analogue ochratoxin B and the five reference molecules. Compared with the composite nanofiber modified by the scrambled oligonucleotide and composite nanofiber, the extraction amount of ochratoxin A was increased by 4.88 and 13.0 times, respectively. Under the optimal extraction conditions, an analytical method based on aptamer modified composite nanofiber dispersion solid phase extraction-high performance liquid chromatography for determination of ochratoxin A was established. The linear range was 0.05-3.0 μg/L, the detection limit was 13 ng/L (S/N=3), and the recoveries of standard addition were 86.7%-101.0%. This method had good selectivity and high sensitivity, and could be applied to the detection of trace ochratoxin A in peanut, corn and wheat samples.
  • 加载中
    1. [1]

      LIAO I C, WAN A, YIM E, LEONG K W. J. Controlled Release, 2005, 104(2):347-358.

    2. [2]

      CHEN X, YE N. RSC Adv., 2017, 7(54):34077-34085.

    3. [3]

    4. [4]

      YING L L, MA Y C, XU B, WANG X H, DONG L Y, WANG D M, LIU K, XU L. J. Chromatogr. A, 2017, 1509:1-8

    5. [5]

      LIU L Y, MA Y X, ZHANG X T, YANG X, HU X G. Anal. Methods, 2020, 12(48):5852-5860.

    6. [6]

    7. [7]

      GUO X, YE T T, LIU L Y, HU X G. J. Sep. Sci., 2016, 39(8):1533-1541.

    8. [8]

    9. [9]

      SÆTHER H V, HOLME H K, MAURSTAD G, SMIDSRØD O, STOKKE B T. Carbohydr. Polym., 2008,74(4):813-821.

    10. [10]

      SANKALIA M G, MASHRU R C, SANKALIA J M, SUTARIYA V B. Eur. J. Pharm. Biopharm., 2007, 65(2):215-232.

    11. [11]

      TANG Z W, LIU X, WANG Y Y, CHEN Q, HAMMOCK B D, XU Y. Environ. Pollut., 2019, 251:238-245.

    12. [12]

      YANG Y J, ZHOU Y, XING Y, ZHANG G M, ZHANG Y, ZHANG C H, LEI P, DONG C, XU D, HE Y J, SHUANG S M. Talanta, 2019, 199:310-316.

    13. [13]

      FENG J H, LI Y Y, GAO Z Q, LV H, ZHANG X B, FAN D W, WEI Q. Biosens. Bioelectron., 2018, 99:14-20.

    14. [14]

    15. [15]

      ZHANG X B, ZHI H, ZHU M Z, WANG F Y, MENG H, FENG L. Biosens. Bioelectron., 2021, 180:113146.

    16. [16]

      WANG C Q, QIAN J, WANG K, YANG X W, LIU Q, HAO N, WANG C K, DONG X Y, HUANG X Y. Biosens. Bioelectron., 2016, 77:1183-1191.

    17. [17]

      KRISHNAN S K, SINGH E, SINGH P, MEYYAPPAN M, NALWA H S. RSC Adv., 2019, 9(16):8778-8881.

    18. [18]

      WANG Y H, SONG W,ZHAO H Y, MA X, YANG S Y, QIAO X J, SHENG Q L, YUE T L. Biosens. Bioelectron., 2021, 182:113171.

    19. [19]

      SONG Y P, HE L, ZHANG S, LIU X, CHEN K, JIA Q J, ZHANG Z H, DU M. Food Chem., 2021, 351:129248-129258.

    20. [20]

      LIAQAT M, RIAZ S, NAWAZ M H, BADEA M, HAYAT A, MARTY J L. Electrochim. Acta, 2021, 379:138172-138180.

    21. [21]

      WU G, XIONG Z W, OH S H, REN Y R, WANG Q, YANG L Z. Food Chem., 2021, 356:129663-129669.

    22. [22]

      GUO Z J, TIAN J, CUI C B, WANG Y, YANG H H, YUAN M, YU H S. Food Control, 2021, 123:107741-107747.

    23. [23]

    24. [24]

      MOEZ E, NOEL D, BRICE S, BENJAMIN G, PASCALINE A, DIDIER M. Food Chem., 2020, 310:125851-125856.

    25. [25]

      CHEN Y Q, DING X Y, ZHU D D, LIN X C, XIE Z H. Talanta, 2019, 200:193-202.

    26. [26]

      JORGE A, CRUZ A, GREGORY P. J. Agric. Food Chem., 2008, 56(22):10456-10461.

    27. [27]

      MA G P, WANG Z L, CHEN J, YIN R X, CHEN B L, NIE J. New J. Chem., 2014, 38(3):1211-1217.

    28. [28]

      KWAŚNIEWSKA K, GADZAŁA-KOPCIUCH R, CENDROWSKI K. Crit. Rev. Anal. Chem., 2015, 45(2):119-130.

    29. [29]

      ZHU W Y, REN C, NIE Y, XU Y. Food Control, 2016, 64:37-44.

    30. [30]

      ANDRADE M A, LANCAS F M. J. Chromatogr. A, 2017, 1493:41-48.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    13. [13]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(8)
  • Abstract views(685)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return