Citation: WANG Chao,  JIA Xiao-Dan,  JIANG Xiu-E. Application of Nanomaterials in Bioimaging Guided Photodynamic Therapy[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1142-1153. doi: 10.19756/j.issn.0253-3820.201702 shu

Application of Nanomaterials in Bioimaging Guided Photodynamic Therapy

  • Corresponding author: JIANG Xiu-E, jiangxiue@ciac.ac.cn
  • Received Date: 24 November 2020
    Revised Date: 17 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22025406, 21874125, 21877107).

  • With the development of nanotechnology, developing novel nanoplatforms simultaneously integrating bioimaging and treatment for precise cancer theranostics has become a research hotspot. As one of the emerging therapies, photodynamic therapy (PDT) has many advantages such as high specificity, controllability and low side effects, which has attracted extensive research attention. Recently, PDT based on nanomaterials has overcome the limitations of traditional PDT such as low stability, low tumor-targeting ability and phototoxicity, and has shown great application potential. Furthermore, the technologies of bioimaging and PDT can be integrated into a single nanoplatform to realize cancer theranostics. So far, a variety of imaging modes have been applied to the research of PDT based on nanomaterials, such as fluorescence imaging, magnetic resonance imaging (MRI), computer tomography (CT) imaging, ultrasound (US) imaging, photoacoustic (PA) imaging, positron emission tomography (PET) imaging, and single-photon emission computed tomography (SPECT) imaging. This article summarizes the use of multifunctional nanomaterials for bioimaging-guided PDT. Finally, the current challenges and prospects for future development are discussed.
  • 加载中
    1. [1]

      RYVOLOVA M, CHOMOUCKA J, DRBOHLAVOVA J, KOPEL P, BABULA P, HYNEK D, ADAM V, ECKSCHLAGER T, HUBALEK J, STIBOROVA M, KAISER J, KIZEK R. Sensors, 2012, 12(11): 14792-14820.

    2. [2]

      CHRONOS N A, GOODALL A H, WILSON D J, SIGWART U, BULLER N P. Circulation, 1993, 88(5): 2035-2044.

    3. [3]

      OH I H, MIN H S, LI L, TRAN T H, LEE Y K, KWON I C, CHOI K, KIM K, HUH K M. Biomaterials, 2013, 34(27): 6454-6463.

    4. [4]

      WANG J L, DU X J, YANG J X, SHEN S, LI H J, LUO Y L, IQBAL S, XU C F, YE X D, CAO J, WANG J. Biomaterials, 2018, 182: 104-113.

    5. [5]

      MONTET X, MONTET-ABOU K, REYNOLDS F, WEISSLEDER R, JOSEPHSON L. Neoplasia, 2006, 8(3): 214-222.

    6. [6]

      MONTET X, WEISSLEDER R, JOSEPHSON L. Bioconjugate Chem., 2006, 17(4): 905-911.

    7. [7]

      FAN W P, HUANG P, CHEN X Y. Chem. Soc. Rev., 2016, 45(23): 6488-6519.

    8. [8]

      ALLISON R R, SIBATA C H. Photodiagnosis Photodyn. Ther., 2010, 7(2): 61-75.

    9. [9]

      CHATTERJEE D K, FONG L S, ZHANG Y. Adv. Drug Deliv. Rev., 2008, 60(15): 1627-1637.

    10. [10]

      VOON S H, KIEW L V, LEE H B, LIM S H, NOORDIN M I, KAMKAEW A, BURGESS K, CHUNG L Y. Small, 2014, 10(24): 4993-5013.

    11. [11]

      GUAN Q, LI Y A, LI W Y, DONG Y B. Chem. -Asian J., 2018, 13(21): 3122-3149.

    12. [12]

      ZHAO T T, SHEN X Q, LI L, GUAN Z P, GAO N Y, YUAN P Y, YAO S Q, XU Q H, XU G Q. Nanoscale, 2012, 4(24): 7712-7719.

    13. [13]

      QIAN H S, GUO H C, HO P C, MAHENDRAN R, ZHANG Y. Small, 2009, 5(20): 2285-2290.

    14. [14]

      KOTAGIRI N, SUDLOW G P, AKERS W J, ACHILEFU S. Nat. Nanotechnol., 2015, 10(4): 370-379.

    15. [15]

      DEL ROSAL B, JIA B H, JAQUE D. Adv. Funct. Mater., 2018, 28(44): 1803733.

    16. [16]

      JAQUE D, RICHARD C, VIANA B, SOGA K, LIU X, GARCÍA SOLÉ J. Adv. Opt. Photon., 2016, 8(1): 1-103.

    17. [17]

      CHEN X Q, LEE D, YU S, KIM G, LEE S, CHO Y, JEONG H, NAM K T, YOON J. Biomaterials, 2017, 122: 130-140.

    18. [18]

      ZUO J, TU L P, LI Q Q, FENG Y S, Que I, ZHANG Y, LIU X M, XUE B, Cruz L J, CHANG Y L, ZHANG H, KONG X G. ACS Nano, 2018, 12(4): 3217-3225.

    19. [19]

      DEGEN C L, POGGIO M, MAMIN H J, RETTNER C T, RUGAR D. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(5): 1313-1317.

    20. [20]

      WEISSLEDER R, NAHRENDORF M, PITTET M J. Nat. Mater., 2014, 13: 125-138.

    21. [21]

      THOMSEN H S, MORCOS S K, DAWSON P. Clin. Radiol., 2006, 61: 905-906.

    22. [22]

      LI Y, DU Y, LIANG X L, SUN T, XUE H D, TIAN J, JIN Z Y. Nanoscale, 2018, 10(35): 16738-16749.

    23. [23]

      BAI J, JIA X D, ZHEN W Y, CHENG W L, JIANG X E. J. Am. Chem. Soc., 2018, 140(1): 106-109.

    24. [24]

      MA Z F, JIA X D, BAI J, RUAN Y D, WANG C, LI J M ZHANG M C, JIANG X E. Adv. Funct. Mater., 2017, 27(4): 1604258.

    25. [25]

      ANTON N, VANDAMME T F. Pharm. Res., 2014, 31(1): 20-34.

    26. [26]

      LI X, ANTON N, ZUBER G, VANDAMME T. Adv. Drug Deliv. Rev., 2014, 76: 116-133.

    27. [27]

      ZHEN W Y, LIU Y, JIA X D, WU L, WANG C, JIANG X E. Nanoscale Horiz., 2019, 4(3), 720-726.

    28. [28]

      ZHANG L, WANG D, YANG K, SHENG D L, TAN B, WANG Z G, RAN H T, YI H J, ZHONG Y X, LIN H, CHEN Yu. Adv. Sci., 2018, 5(8): 1800049.

    29. [29]

      ZHOU J, WANG Q L, GENG S Z, LOU R, YIN Q W, YE W R. Mater. Sci. Eng. C, 2019, 102: 541-551.

    30. [30]

      PAEFGEN V, DOLESCHEL D, KIESSLING F. Front. Pharmacol., 2015, 6: 197.

    31. [31]

      CLAUDON M, DIETRICH C F, CHOI B I, COSGROVE D O, KUDO M, NOLSØE C P, PISCAGLIA F, WILSON S R, BARR R G, CHAMMAS M C, CHAUBAL N G, CHEN M-H, CLEVERT D A, CORREAS J M, DING H, FORSBERG F, FOWLKES J B, GIBSON R N, GOLDBERG B B, LASSAU N, LEEN E L S, MATTREY R F, MORIYASU F, SOLBIATI L, WESKOTT H P, XU H X. Ultrasound Med. Biol., 2013, 39(2): 187-210.

    32. [32]

      MULLIN L B, PHILLIPS L C, DAYTON P A. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013, 60(1): 65-77.

    33. [33]

      CASCIARO S, SOLOPERTO G, GRECO A, CASCIARO E, FRANCHINI R, CONVERSANO F. IEEE Sens. J., 2013, 13(6): 2305-2312.

    34. [34]

      SUN S J, XU Y X, FU P, CHEN M, SUN S H, ZHAO R R, WANG J R, LIANG X L, WANG S M. Nanoscale, 2018, 10(42): 19945-19956.

    35. [35]

      HU D H, CHEN Z W, SHENG Z H, GAO D Y, YAN F, MA T, ZHENG H R, HONG M. Nanoscale, 2018, 10(36): 17283-17292.

    36. [36]

      ZHANG H F, MASLOV K, STOICA G, WANG L V. Nat. Biotechnol., 2006, 24(7): 848-851.

    37. [37]

      WILSON K, HOMAN K, EMELIANOV S. Nat. Commun., 2012, 3(1): 618.

    38. [38]

      WEBER J, BEARD P C, BOHNDIEK S E. Nat. Methods, 2016, 13(8): 639-650.

    39. [39]

      CHEN Z J, YANG S H, XING D. Opt. Lett., 2012, 37(16): 3414-3416.

    40. [40]

      GALANZHA E I, SHASHKOV E V, SPRING P M, SUEN J Y, ZHAROV V P. Cancer Res., 2009, 69(20): 7926.

    41. [41]

      WEISSLEDER R. Nat. Biotechnol., 2001, 19(4): 316-317.

    42. [42]

      HOU Z Y, DENG K R, WANG M F, LIU Y H, CHANG M Y, HUANG S S, LI C X, WEI Y, CHEN Z Y, HAN G, Al KHERAIF A A, LIN J. Chem. Mater., 2019, 31(3): 774-784.

    43. [43]

      WANG Y J, GONG N G, LI Y J, LU Q C, WANG X, LI J H. J. Am. Chem. Soc., 2020, 142: 1735-1739.

    44. [44]

      ZHEN W Y, LIU Y, LIN L, BAI J, JIA Xi D, TIAN H Y, JIANG X E. Angew. Chem., Int. Ed., 2018, 57(32): 10309-10313.

    45. [45]

      GOTTHARDT M, BLEEKER-ROVERS C P, BOERMAN O C, OYEN W J G. J. Nucl. Med. Technol, 2013, 41(3): 157-169.

    46. [46]

      YU B, GOEL S, NI D L, ELLISON P A, SIAMOF C M, JIANG D W, CHENG L, KANG L, YU F Q, LIU Z, BARNHART T E, HE Q J, ZHANG H, CAI W B. Adv. Mater., 2018, 30(13): 1704934.

    47. [47]

      ZHU W J, YANG Y, JIN Q T, CHAO Yu, TIAN L L, LIU J J, DONG Z L, LIU Z. Nano Res., 2019, 12(6): 1307-1312.

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    10. [10]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    11. [11]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    17. [17]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return