Citation: WANG Hai-Peng,  CHU Xiao-Li,  CHEN Pu,  LIU Dan,  LI Jing-Yan,  XU Yu-Peng. Research and Application Progress of Algorithms for Spectral Baseline Correction[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1270-1281. doi: 10.19756/j.issn.0253-3820.201679 shu

Research and Application Progress of Algorithms for Spectral Baseline Correction

  • Corresponding author: CHU Xiao-Li, cxlyuli@sina.com
  • Received Date: 15 November 2020
    Revised Date: 29 March 2021

    Fund Project: Supported by the National Key Research & Development Program of China (No.2017YFB0306501).

  • The baseline drift is common in the measurement process of Raman spectroscopy, middle infrared (MIR) spectroscopy, near infrared (NIR) spectroscopy, laser-induced breakdown spectroscopy (LIBS) and other spectral instrumentation, which will seriously deteriorate the result of subsequent qualitative and quantitative analysis of spectra. To obtain accurate and clear results, some effective baseline correction algorithms have been implemented to correct the baseline of spectra before subsequent qualitative and quantitative analysis, especially combined with chemometric methods. Baseline correction algorithms are mainly derivative method, iterative polynomial fitting, piecewise fitting, moving window smoothing, wavelet transform (WT), penalized least squares and robust baseline estimation (RBE). These algorithms can eliminate the adverse effects of baseline drift on quantitative and qualitative analysis to a large extent, but each of them has some shortcomings in certain aspects. In recent years, in response to the drawbacks of the aforementioned algorithms, some improved and novel algorithms for baseline correction have been proposed one after another. Improved algorithms are mainly adaptive minmax polynomial fitting fluorescence background subtraction algorithms, interval linear fitting based on subspace vector angle, dynamic moving Savitzky-Golay algorithms, selection method of optimum decomposition in wavelet transform based on energy distribution, adaptive iteratively reweighted penalized least squares (airPLS), etc. Novel algorithms include fluorescence photo-bleaching difference approach (FBDA), algorithms based on morphological operators, synchronous fitting algorithms of pure spectrum and baseline based on sparse representation, etc. These algorithms have not only improved the quality of spectra but also further enhanced the accuracy and robustness of subsequent quantitative and qualitative analysis based on spectra. This article systematically reviews basic algorithms, improved algorithms and novel algorithms for spectral baseline correction, as well as their application research progress, and the development prospect of algorithms for spectral baseline correction is discussed.
  • 加载中
    1. [1]

      LIU X B, ZHANG Z M, LIANG Y Z, SOUSA P F M, YUN Y H, YU L. Chemom. Intell. Lab. Syst., 2014, 139: 97-108.

    2. [2]

      GALLO C, CAPOZZI V, LASALVIA M, PERNA G. Vib. Spectrosc., 2016, 83: 132-137.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      LIEBER C A, MAHADEVAN-JANSEN A. Appl. Spectrosc., 2003, 57(11): 1363-1367.

    11. [11]

      RUCKSTUHL A F, JACOBSON M P, FIELD R W, DODD J A. J. Quant. Spectrosc. Radiat. Transfer, 2001, 68(2): 179-193.

    12. [12]

    13. [13]

      KOCH M, SUHR C, ROTH B, MEINHARDT-WOLLWEBER M. J. Raman Spectrosc., 2017, 48(2): 336-342.

    14. [14]

      LIU H, ZHANG Z L, LIU S Y, YAN L X, LIU T T, ZHANG T X. Appl. Spectrosc., 2015, 69(9): 1013-1022.

    15. [15]

      HAN Q J, XIE Q, PENG S L,GUO B K. Analyst, 2017, 142(13): 2460-2468.

    16. [16]

      LI H R, DAI J S, PAN T H, CHANG C Q, SO H C. Chemometr. Intell. Lab. Syst., 2020, 204: 104088.

    17. [17]

      KWIATKOWSKI A, GNYBA M, SMULKO J, WIERZBA P. Metrol. Meas. Syst., 2010, 17(4): 549-559.

    18. [18]

    19. [19]

      ZHAO J H, LUI H, MCLEAN D I, ZENG H S. Appl. Spectrosc., 2007, 61(11): 1225-1232.

    20. [20]

    21. [21]

    22. [22]

      BAEK S J, PARK A, KIM J Y, SHEN A G, HU J M. Chemometr. Intell. Lab. Syst., 2009, 98(1): 24-30.

    23. [23]

    24. [24]

      RENNER G, WEISS V. Comput. Aided Des., 2004, 36(4): 351-362.

    25. [25]

    26. [26]

    27. [27]

      EILERS P H C. Anal. Chem., 2003, 75(14): 3631-3636.

    28. [28]

      ZHANG F, TANG X J, TONG A X, WANG B, WANG J W. Sensors, 2020, 20(7): 2015-2026.

    29. [29]

      ZHANG F, TANG X J, TONG A X, WANG B, WANG J W, LV Y Y, TANG C R, WANG J. Spectrosc. Lett., 2020, 53(3): 222-233.

    30. [30]

      ZHANG Z M, CHEN S, LIANG Y Z. Analyst, 2010, 135(5): 1138-1146.

    31. [31]

      PENG J T, PENG S L, JIANG A, WEI J P, LI C W, TAN J. Anal. Chim. Acta, 2010, 684(1): 63-68.

    32. [32]

      LIU J C, OSADCHY M, ASHTON L, FOSTER M, SOLOMON C J, GIBSON S J. Analyst, 2017, 142(21): 4067-4074.

    33. [33]

    34. [34]

      BERTINETTO C G, VUORINEN T. Appl. Spectrosc., 2014, 68(2): 155-164.

    35. [35]

      MANSOUR H M, HICKEY A J. AAPS PharmSciTech, 2007, 8(4): 99.

    36. [36]

      GAO M, LEWIS G, TURNER G M, SOUBRET A, NTZIACHRISTOS V. Appl. Opt., 2005, 44(26): 5468-5474.

    37. [37]

      SHORT K W, CARPENTER S, FREYER J P, MOURANT J R. Biophys. J., 2005, 88(6): 4274-4288.

    38. [38]

      CAO A, PANDYA A K, SERHATKULU G K, KAST R E, DAI H B, THAKUR J S, NAIK V M, NAIK R, AUNER G, RABAH R, FREEMAN D C. J. Raman Spectrosc., 2007, 38(9): 1199-1205.

    39. [39]

    40. [40]

      HU H B, BAI J, XIA G, ZHANG W D, MA Y. Photonic Sens., 2018, 8(4): 332-340.

    41. [41]

      LIU J T, SUN J Y, HUANG X Z, LI G J, LIU B Q. Appl. Spectrosc., 2015, 69(7): 834-842.

    42. [42]

    43. [43]

    44. [44]

      WEAKLEY A T, GRIFFITHS P R, ASTON D E. Appl. Spectrosc., 2012, 66(5): 519-529.

    45. [45]

      SUN L X, YU H B. Spectrochim. Acta, Part B, 2009, 64(3): 278-287.

    46. [46]

      SUN K, SU H, YAO Z X, HUANG P X. Spectroscopy-US, 2014, 29(2): 54, 56, 58-61.

    47. [47]

    48. [48]

      GUO S X, BOCKLITZ T, POPP J. Analyst, 2016, 141(8): 2396-2404.

    49. [49]

      ROWLANDS C, ELLIOTT S. J. Raman Spectrosc., 2011, 42(3): 363-369.

    50. [50]

    51. [51]

    52. [52]

    53. [53]

      GONZALEZ-VIDAL J J, PEREZPUEYO R P, SONEIRA M J. J. Raman Spectrosc., 2017, 48(6): 878-883.

    54. [54]

      CAI Y Y, YANG C H, XU D G, GUI W H. Anal. Methods, 2018, 10(28): 3525-3533.

    55. [55]

      DE ROOI J J, EILERS P H C. Chemometr. Intell. Lab. Syst., 2012, 117: 56-60.

    56. [56]

    57. [57]

    58. [58]

    59. [59]

      PRAKASH B D, WEI Y C. Analyst, 2011, 136(15): 3130-3135.

    60. [60]

      SCHULZE H G, FOIST R B, OKUDA K, IVANOV A, TURNER R F B. Appl. Spectrosc., 2012, 66(7): 757-764.

    61. [61]

      KRISHNA H, MAJUMDER S, GUPTA P K. J. Raman Spectrosc., 2012, 43: 1884-1894.

    62. [62]

    63. [63]

      LI N, LI X Y, ZOU Z X, LIN L R, LI Y Q. Analyst, 2011, 136(13): 2802-2810.

    64. [64]

    65. [65]

      HU Y G, ZHOU J J, TANG J, XIAO S. Chromatographia, 2013, 76(11-12): 687-696.

    66. [66]

    67. [67]

      MA C X, SHAO X G. J. Chem. Inf. Comput. Sci., 2004, 44(3): 907-911.

    68. [68]

      CHEN D, SHAO X G, HU B, SU Q D. Anal. Chim. Acta, 2004, 511(1): 37-45.

    69. [69]

    70. [70]

      GALLOWAY C M, RU E C L, ETCHEGOIN P G. Appl. Spectrosc., 2009, 63(12): 1370-1376.

    71. [71]

    72. [72]

    73. [73]

      BAEK S J, PARK A, AHN Y J, CHOO J. Analyst, 2015, 140(1): 250-257.

    74. [74]

    75. [75]

      HE S X, ZHANG W, LIU L J, HUANG Y, HE J M, XIE W Y, WU P, DU C L. Anal. Methods, 2014, 6(12): 4402-4407.

    76. [76]

      YANG G F, DAI J C, LIU X J, CHEN M, WU X L. Appl. Spectrosc., 2019, 74(12): 1443-1451.

    77. [77]

      ZHANG Z M, CHEN S, LIANG Y Z. Analyst, 2010, 135(5): 1138-1146.

    78. [78]

      XU D G, LIU S, CAI Y Y, YANG C H. Appl. Opt., 2019, 58(14): 3913-3920.

    79. [79]

    80. [80]

    81. [81]

      LI Z, ZHAN D J, WANG J J, HUANG J, XU Q S, ZHANG Z M, ZHENG Y B, LIANG Y Z, WANG H. Analyst, 2013, 138(16): 4483-4492.

    82. [82]

      ZHANG Z M, CHEN S, LIANG Y Z, LIU Z X, ZHANG Q M, DING L X, YE F, ZHOU H. J. Raman Spectrosc., 2010, 41(6): 659-669.

    83. [83]

    84. [84]

    85. [85]

    86. [86]

    87. [87]

      LILAND K H, RUKKE E O, OLSEN E F, ISAKSSON T. Chemometr. Intell. Lab. Syst., 2011, 109(1): 51-56.

    88. [88]

      SELESNICK I, GRABER H L, PFEIL D S, BARBOUR R L. IEEE T. Signal Proces., 2014, 62: 1109-1124.

    89. [89]

      NING X R, SELESNICK I W, DUVAL L. Chemometr. Intell. Lab., 2014, 139: 156-167.

    90. [90]

    91. [91]

      YI C C, LV Y, XIAO H, KE K, YU X. Spectrochim. Acta, Part B, 2017, 138: 72-80.

    92. [92]

    93. [93]

      YAO J, SU H, YAO Z X. Spectrochim. Acta, Part A, 2020, 238: 118417.

    94. [94]

    95. [95]

      LIU Y J, ZHOU X G, YU Y D. Analyst, 2015, 140(23): 7984-7996.

  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    12. [12]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    17. [17]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    18. [18]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    19. [19]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    20. [20]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

Metrics
  • PDF Downloads(136)
  • Abstract views(2990)
  • HTML views(799)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return