Citation: WEI Fu-Cun,  OU Pan-Pan,  WU Ye-Yu,  WU Jia-Wen,  LIN Yu,  DU Fang-Kai,  TAN Xue-Cai. Construction of Electrochemiluminescence Sensor for Detection of Coper Ion Based on Novel Porous Titanium Dioxide Coupled Cadmium Sulfide Quantum Dots[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1308-1317. doi: 10.19756/j.issn.0253-3820.201678 shu

Construction of Electrochemiluminescence Sensor for Detection of Coper Ion Based on Novel Porous Titanium Dioxide Coupled Cadmium Sulfide Quantum Dots

  • Corresponding author: TAN Xue-Cai, gxuntan@126.com
  • Received Date: 15 November 2020
    Revised Date: 22 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21365004), the Key Research and Development Project of Guangxi (No.AB18126048), the Guangxi Innovation-driven Development Special Fund Project (No.AA18118013-10), the Specific Research Project of Guangxi for Research Bases and Talents (No.AD18126005), the Young and Middle Aged Teachers Basic Ability Promotion Project by Guangxi Education Department (No.2019KY0162), and the Graduate Education Innovation Plan of Guangxi University for Nationalities (No.gxun-chxzs2019018).

  • A novel porous titanium dioxide (P-TiO2) was successfully synthesized via calcination of metal-organic framework MIL-125(Ti). Then P-TiO2 was coated with massive polyethyleneimine films and further bound covalently with 3-mercaptopropionic acid stabilized cadmium sulfide quantum dots (CdS QDs) to prepare P-TiO2/CdS QDs composites. The as-prepared P-TiO2/CdS QDs was modified on the surface of glassy carbon electrode to develop a sensitive electrochemiluminescence (ECL) sensor for detection of Cu2+. The morphology, microstructure and element composition of different materials were characterized by scanning electron microscope, X-ray powder diffraction, energy disperse spectroscopy, ultraviolet-visible absorption spectrometry, fluorescence spectrometry and infrared spectrometry, respectively. The electrochemical behavior and ECL performance of the sensor were also studied by cyclic voltammetry, electrochemical impedance and ECL technique. Under the optimized conditions, the proposed sensor demonstrated excellent analytical performance with a wide linear detection range from 3 nmol/L to 530 nmol/L (R2=0.9989) and a detection limit of 0.01 nmol/L (S/N=3) for Cu2+. This method exhibited excellent stability, reproducibility and selectivity. In addition, the detection results of Cu2+ in water samples were similar to that of inductively coupled plasma-atomic emission spectrometry method (ICP-AES) with recovery rates of 96.9%-105.8%.
  • 加载中
    1. [1]

      BARCELOUX D G, BARCELOUX D. J. Toxicol., Clin. Toxicol., 1999, 37(2): 217-230.

    2. [2]

      BULL P C, THOMAS G R, ROMMENS J M, FORBES J R, COX D W. Nat. Genet., 1993, 5(4): 327-337.

    3. [3]

    4. [4]

      LIANG P, LIU Y, GUO L. Spectrochim. Acta, Part B, 2005, 60(1): 125-129.

    5. [5]

      LIN T W, HUANG S D. Anal. Chem., 2001, 73(17): 4319-4325.

    6. [6]

      LUO M C, DI J W, LI L, TU Y F, YAN J L. Talanta, 2018, 187: 231-236.

    7. [7]

      XU S P, DAI B L, XU J M, JIANG L, HUANG H. Electroanalysis, 2019, 31(12): 2299-2545.

    8. [8]

      XU S L, CAO X X, ZHOU Y K. Microchim. Acta, 2019, 186: 562.

    9. [9]

      LUO J H, CHENG D, LI PX, YAO Y, CHEN S H, YUAN R, XU W J. Microchim. Acta, 2018, 54, 2777-2780.

    10. [10]

      XING B, ZHANG T, HAN Q Z, WEI Q, WU D. Microchim. Acta, 2019, 186: 505.

    11. [11]

      DONG Y P, WANG J, PENG Y, ZHU J J. J. Electroanal. Chem., 2016, 781: 109-113.

    12. [12]

      DAI Z Q, SU Y Y, GAO Z D, SONG Y Y. J. Electroanal. Chem., 2020, 877: 114727.

    13. [13]

      CHEN P P, XIA F Q, TIAN D, ZHOU C L. J. Electrochem. Soc., 2018, 165(5): B196-B201.

    14. [14]

      JIANG K, ZHAN G L, HU Q, YANGY Y, LIN W X, CUI Y J, YANG Y, QIAN G D. Mater. Lett., 2018, 225: 142-144.

    15. [15]

      SUN Y W, LIU Y, CARO J, GUO X W, SONG C S, LIU Y. Angew. Chem., Int. Ed., 2018, 57(49): 16088-16093.

    16. [16]

      MCNAMARA N D, HICKS J C. ACS Appl. Mater. Interfaces, 2015, 7(9): 5338-5346.

    17. [17]

      ZHENG H L, YI H, DAI H, FANG D D, HONG Z S, LIN D M, ZHENG X Q, LIN Y Y. Sens. Actuators, B, 2018, 269: 27-35.

    18. [18]

      ZHANG S B, ZHENG H L, CHEN Y, YI H, DAI H, HONG Z S, LIN Y Y. ACS Appl. Nano Mater., 2019, 2(11): 7061-7066.

    19. [19]

      ZHENG H L, YI H, DAI H, FANG D D, HONG Z S, LIN D M, ZHENG X Q, LIN Y Y. Sens. Actuators, B, 2018, 269: 27-35.

    20. [20]

      ZANG Y, LEI J Q, HAO Q, JU H X. ACS Appl. Mater. Interfaces, 2014, 6(18): 15991-15997.

    21. [21]

      SABY C, ORTIZ B, CHAMPAGNE G Y, BELANGER D. Langmuir, 1997, 13(25): 6805-6813.

    22. [22]

      LAI S J, CHANG X J, FU C. Microchim. Acta, 2009, 165: 39-44.

    23. [23]

      ZHUO M, HAN L, DENG D M, ZHANG Z, HE H B, ZHANG L, LUO L Q. Sens. Actuators, B, 2019, 291: 164-169.

    24. [24]

      SHAMSIUR M, CHABOK A, MOLAABASI F, SEYFOORI A, HAJIPOUR V, GIVI B S, SEDGHI M, MANESH H A, FAAL Y A. Biosens. Bioelectron., 2019, 141: 111337.

    25. [25]

      GRINYTE R, BARROSO J, BUITRAGO B D, SAA L, MOLLER M, PAVLOV V. Anal. Chim. Acta, 2017, 986: 42-47.

    26. [26]

      ZHAO G H, LI X J, ZHAO Y B, LI Y Y, CAO W, WEI Q. Analyst, 2017, 142: 3272-3277.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(7)
  • Abstract views(861)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return