Citation: WANG Hong,  SU Xing-Song,  ZHOU Fei,  DUAN Guo-Tao. Preparation of Zinc Oxide Monolayer Porous Hollow Sphere Array and Its Ultra-Fast Response to NO2 at Room Temperature under Ultraviolet Irradiation[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1112-1121. doi: 10.19756/j.issn.0253-3820.201607 shu

Preparation of Zinc Oxide Monolayer Porous Hollow Sphere Array and Its Ultra-Fast Response to NO2 at Room Temperature under Ultraviolet Irradiation

  • Corresponding author: DUAN Guo-Tao, duangt@hust.edu.cn
  • Received Date: 16 October 2020
    Revised Date: 25 January 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2020YFB2008701) and the National Natural Science Foundation of China (No.11674320).

  • By using monolayer polystyrene colloidal spheres as the template, ZnO array-film was in-situ synthesized on the plate electrodes for gas sensors by template-assisted hydrothermal method. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) characterization results showed that the film was composed of ordered monolayer porous hollow spheres with pore size of about 4 nm. The gas-sensing performances of the prepared thin-film gas sensor were investigated. Under UV irradiation with a low optical radiation power (1.7 mW/cm2), the thin-film gas sensor based on ZnO monolayer hollow sphere array showed excellent NO2-sensing performances with a detection limit of 0.098 mg/m3, and the sensing response toward 2.45 mg/m3 NO2 gas could reach 5.7 with an ultra-fast response/recovery speed (3 s/5 s). With the finite difference time domain method, the local field intensity of the monolayer hollow sphere array-film was investigated, and it was found that the second-level response/recovery mechanism might be due to the relatively uniform local field intensity distribution of the monolayer hollow sphere array film.
  • 加载中
    1. [1]

      EBRAHIM A M, BANDOSZ T J. ACS Appl. Mater. Interfaces, 2013, 5(21):10565-10573.

    2. [2]

      WANG J, SHEN Y Q, LI X, XIA Y, YANG C. Sens. Actuators, B, 2019, 298:126858.

    3. [3]

      TAN J J, HU J Y, REN J X, PENG J F, LIU C, SONG Y Q, ZHANG Y. Chin. Chem. Lett., 2020, 31(8):2103-2108.

    4. [4]

      YU X, WANG D, WANG Y Q, YAN J, WANG X Y. Chin. Chem. Lett., 2020, 31(8):2099-2102.

    5. [5]

      YANG Y, QI J L, RUAN Z L, YIN P, ZHANG S Y, LIU J M, LIU Y N, LI R, WANG L J, LIN H L. The Innovation, 2020, 1(3):100064.

    6. [6]

      ZENG W W, LIU Y Z, MEI J, TANG C Y, LUO K, LI S M, ZHAN H R, HE Z K. Sens. Actuators, B, 2019, 301:127010.

    7. [7]

      LI J W, LIU X, CUI J S, SUN J B. ACS Appl. Mater. Interfaces, 2015, 7(19):10108-10114.

    8. [8]

      BARSAN N, KOZIEJ D, WEIMAR U. Sens. Actuators, B, 2007, 121(1):18-35.

    9. [9]

      JAISWAL J, SINGH P, CHANDRA R. Sens. Actuators, B, 2021, 327:128862.

    10. [10]

      LI Z, ZHANG Y, ZHANG H, JIANG Y, YI J X. ACS Appl. Mater. Interfaces, 2020, 12(33):37489-37498.

    11. [11]

      CAMAGNI P, FAGLIA G, GALINETTO P, PEREGO C, SAMOGGIA G, SBERVEGLIERI G. Sens. Actuators, B, 1996, 31(1-2):99-103.

    12. [12]

      COMINI E, FAGLIA G, SBERVEGLIERI G. Sens. Actuators, B, 2001, 78(1):73-77.

    13. [13]

      LI C, ZHANG D H, LIU X L, HAN S N, TANG T, HAN J, ZHOU C W. Appl. Phys. Lett., 2003, 82(10):1613.

    14. [14]

      FAN S W, SRIVASTAVA A, DRAVID V. Appl. Phys. Lett., 2009, 95:142106-142106.

    15. [15]

      MENG L X, XU Q, SUN Z, LI G D, BAI S, WANG Z H, QIN Y. Mater. Lett., 2018, 212:296-298.

    16. [16]

      WANG H T, ZHOU L S, LIU Y Y, LIU F M, LIANG X S, LIU F M, GAO Y, YAN X, LU G Y. Sens. Actuators, B, 2020, 305:127498.

    17. [17]

      KIDA T, FUJIYAMA S, SUEMATSU K, YUASA M, SHIMANOE K. J. Phys. Chem. C, 2013, 117(34):17574-17582.

    18. [18]

      SU X S, GAO L, ZHOU F, DUAN G T. Sens. Actuators, B, 2017, 251:74-85.

    19. [19]

      LI W W, GUO J H, CAI L, QI W Z, SUN Y L, XU J L, SUN M X, ZHU H W, XIANG L, XIE D, REN T L. Sens. Actuators, B, 2019, 290(7):443-452.

    20. [20]

      GENG X, LU P F, ZHANG C, LAHEM D, OLIVIER M G, DEBLIQUY M. Sens. Actuators, B, 2019, 282:690-702.

    21. [21]

      HAN C H, LI X W, LIU Y, LI X H, SHAO C L, RI J S, MA J G, LIU Y C. J. Hazard. Mater., 2021, 403:124093.

    22. [22]

      DAS S, GIRIJA K G, DEBNATH A K, VATSA R K. J. Alloys Compd., 2021, 854(2):157276.

    23. [23]

      ZHONG Y J, LI W W, ZHAO X L, JIANG X, LIN S Y, ZHEN Z, CHEN W D, XIE D, ZHU H W. ACS Appl. Mater. Interfaces, 2019, 11(14):13441-13449.

    24. [24]

      BO Z, WEI X, GUO X Z, YANG H C, MAO S, YAN J H, CEN K F. Chem. Phys. Lett., 2020, 750(7):137485.

    25. [25]

      HOU L, ZHANG C M, MA P, LI L, ZHU K K, KANG X F, CHEN W. Chin. J. Anal. Chem., 2018, 46(7):E1854-E1862.

    26. [26]

      LI X G, LI X X, WANG J, LIN S W. Sens. Actuators, B, 2015, 219:158-163.

    27. [27]

    28. [28]

    29. [29]

      FAN S W, SRIVASTAVA A K, DRAVID V P. Appl. Phys. Lett., 2009, 95(14):142106.

    30. [30]

      MUN Y, PARK S, AN S, LEE C, KIM H W. Ceram. Int., 2013, 39(8):8615-8622.

    31. [31]

      HYODO T, URATA K, KAMADA K, UEDA T, SHIMIZU Y. Sens. Actuators, B, 2017, 253:630-640.

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    6. [6]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(5)
  • Abstract views(626)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return