Citation: LIU Fu-Xin,  DU Shi-Long,  LI Lin,  LIU Qian,  DING Lan,  LIU Xiu-Hui. A Novel Electrochemical Sensor Based on Pt Nanoparticles/Carbon Nanospheres for Direct Detection of Peroxynitrite Anion Released by Living Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2086-2095. doi: 10.19756/j.issn.0253-3820.201398 shu

A Novel Electrochemical Sensor Based on Pt Nanoparticles/Carbon Nanospheres for Direct Detection of Peroxynitrite Anion Released by Living Cells

  • Corresponding author: LIU Xiu-Hui, liuxh@nwnu.edu.cn
  • Received Date: 8 July 2020
    Revised Date: 27 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21565021).

  • Peroxynitrite anion (ONOO-) is one of the most important molecules in biological systems and is usually maintained at a very low concentration level under normal physiological condition. However, under oxidative stress, the body will produce high concentration of ONOO- abnormally, which may damage many biomolecules seriously and affect the physiological functions of cells. Therefore, it is very important to construct a sensor that can detect ONOO- released by cells sensitively and rapidly. In this work, a novel ONOO- electrochemical sensor was constructed based on carbon nanospheres (CNS) composite materials modified with platinum nanoparticles (PtNPs). Electron microscopes and electrochemical technology were used for characterization of the prepared CTS/PtNPs/CNS. The sensor showed excellent analytical performance for ONOO- detection, with a wide linear range from 0.615 nmol/L to 0.139 mmol/L, and an extremely low detection limit of 0.205 nmol/L (S/N=3). In addition, it also showed good selectivity, stability and reproducibility, and was applied to detect ONOO- released from living cells. The released ONOO- of cells induced by Cd2+ was investigated, and it was found that more ONOO- released from cells at higher Cd2+ concentration. Finally, the protective effects of the α-lipoic acid (ALA) and glutathione (GSH) on cells were investigated by electrochemical method, and it was found that the antioxidants mixture (ALA+GSH) had better protect cells due to their synergistic effect. The experimental results showed that the developed sensing platform and efficient antioxidation strategy provided the possibility for the future application in the biomedical field and cancer diseases.
  • 加载中
    1. [1]

      PARRI M, CHIARUGI P. Antioxid. Redox Signaling, 2013, 19(15):1828-1845.

    2. [2]

      RODRIGUES P, DE MARCO G, FURRIOL J, MANSEGO M L, PINEDA-ALONSO M, GONZALEZ-NEIRA A, MARTIN-ESCUDERO J C, BENITEZ J, LLUCH A, CHAVES F J, EROLES P. BMC Cancer, 2014, 14(1):861-876.

    3. [3]

      GOLDSTEIN S, LIND J, MERÉNYI G. Chem. Rev., 2005, 105(6):2457-2470.

    4. [4]

      TUPURANI M A, PADALA C, KUMAR R G, PURANAM K, KUMARI S, RANI S H. Int. J. Anal. Bio-Sci., 2013, 1(1):14-20.

    5. [5]

      VALKO M, IZAKOVIC M, MAZUR M, RHODES C J, TELSER J. Mol. Cell. Biochem., 2004, 266(1):37-56.

    6. [6]

      BOHLE D S, HANSERT B, PAULSON S C, SMITH B D. J. Am. Chem. Soc., 1994, 116(16):7423-7424.

    7. [7]

      RADI R, PELUFFO G, ALVAREZ M A N, NAVILIAT M, CAYOTA A. Free Radical Biol. Med., 2001, 30(5):463-488.

    8. [8]

      HUANG J C, LI D J, DIAO J C, HOU J, YUAN J L, ZOU G L. Talanta, 2007, 72(4):1283-1287.

    9. [9]

      SODUM R S, AKERKAR S A, FIALA E S. Anal. Biochem., 2000, 280(2):278-285.

    10. [10]

      DIKALOV S, SKATCHKOV M, BASSENGE E. Biochem. Biophys. Res. Commun., 1997, 230(1):54-57.

    11. [11]

      LI Y, HU K K, YU Y, ROTENBERG S A, AMATORE C, MIRKIN M V. J. Am. Chem. Soc., 2017, 139(37):13055-13062.

    12. [12]

      KOH W C A, SON J I, CHOE E S, SHIM Y B. Anal. Chem., 2010, 82(24):10075-10082.

    13. [13]

      PETEU S F, WHITMAN B W, GALLIGAN J J, SWAIN G M. Analyst, 2016, 141(5):1796-1806.

    14. [14]

      PETEU S F, BOSE T, BAYACHOU M. Anal. Chim. Acta, 2013, 780:81-88.

    15. [15]

      AMATORE C, ARBAULT S, BRUCE D, DE OLIVEIRA P, ERARD M, VUILLAUME M. Chem.-Eur. J., 2001, 7(19):4171-4179.

    16. [16]

      WANG Y, CHEN Z Z. Talanta, 2010, 82(2):534-539.

    17. [17]

      XIE F, ZHANG L, SU D, JARONIEC M, QIAO S Z. Adv. Mater., 2017, 29(24):1700989.

    18. [18]

      ZHAO M, CUI X, XU Y, CHEN L, HE Z, YANG S, WANG Y. Nanoscale, 2018, 10(32):15379-15386.

    19. [19]

      GANESHKUMAR M, PONRASU T, SATHISHKUMAR M, SUGUNA L. Colloids Surf., B, 2013, 103:238-243.

    20. [20]

      CUI R, LIU C, SHEN J, GAO D, ZHU J J, CHEN H Y. Adv. Funct. Mater., 2008, 18(15):2197-2204.

    21. [21]

      LEE M H, WANG S Y, CHIANG W H, FENG H, HUANG T Y, YEH M H, WU K C W, HO K C. J. Taiwan Inst. Chem. Eng., 2019, 96:566-574.

    22. [22]

      LI P, ZHANG M, LIU X, SU Z, WEI G. Nanomaterials, 2017, 7(9):236-247.

    23. [23]

      LIU Y, SHANG T, LIU Y, LIU X, XUE Z, LIU X. Sens. Actuators, B, 2018, 263:543-549.

    24. [24]

      KANG X, WANG J, WU H, AKSAY I A, LIU J, LIN Y. Biosens. Bioelectron., 2009, 25(4):901-905.

    25. [25]

      ALI A, AHMED S. Int. J. Biol. Macromol., 2018, 109:273-286.

    26. [26]

      BIN D S, CHI Z X, LI Y, ZHANG K, YANG X, SUN Y G, PIAO J Y, CAO A M, WAN L J. J. Am. Chem. Soc., 2017, 139(38):13492-13498.

    27. [27]

      ZHOU L N, ZHANG X T, SHEN W J, SUN S G, LI Y J. RSC Adv., 2015, 5(57):46017-46025.

    28. [28]

      ROBINSON K M, BECKMAN J S. Methods Enzymol., 2005, 396:207-214.

    29. [29]

      LIU Z, GAN L, HONG L, CHEN W, LEE J Y. J. Power Sources, 2005, 139(1):73-78.

    30. [30]

      XIE B, ZHANG Y, DU N, LI H, HOU W, ZHANG R. Chem. Commun., 2016, 52(95):13815-13818.

    31. [31]

      MACLEOD A J. Appl. Math. Comput., 1993, 57(2-3):305-310.

    32. [32]

    33. [33]

      VELASCO J G. Electroanalysis, 1997, 9(11):880-882.

    34. [34]

      IWUNZE M O. Cell. Mol. Biol. (Noisy-le-grand), 2004, 50(6):759-765.

    35. [35]

      CORTẼS J S, GRANADOS S G, ORDAZ A A, JIMÉNEZ J A L, GRIVEAU S, BEDIOUI F. Electroanalysis, 2007, 19(1):61-64.

    36. [36]

      LI L, ZHANG B, LIU F, XUE Z, LU X, LIU X. Sens. Actuators, B, 2020, 306:127560.

    37. [37]

      HOSU I S, WANG Q, VASILESCU A, PETEU S F, RADITOIU V, RAILIAN S, ZAITSEV V, TURCHENIUK K, WANG Q, LI M. RSC Adv., 2015, 5(2):1474-1484.

    38. [38]

      OPREA R, PETEU S F, SUBRAMANIAN P, QI W, PICHONAT E, HAPPY H, BAYACHOU M, BOUKHERROUB R, SZUNERITS S. Analyst, 2013, 138(15):4345-4352.

    39. [39]

      LIU F, LI L, ZHANG B, FAN W, ZHANG R, LIU G, LIU X. Analyst, 2019, 144(23):6905-6913.

    40. [40]

      GENNARI A, CORTESE E, BOVERI M, CASADO J, PRIETO P. Toxicology, 2003, 183(1):211-220.

    41. [41]

      WANG Y, WU Y, LUO K, LIU Y, ZHOU M, YAN S, SHI H, CAI Y. Food Chem. Toxicol., 2013, 58:61-67.

    42. [42]

      FANG X, HUANG T, ZHU Y, YAN Q, CHI Y, JIANG J X, WANG P, MATSUE H, KITAMURA M, YAO J. Antioxid. Redox Signaling, 2011, 14(12):2427-2439.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(11)
  • Abstract views(705)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return