Citation: WANG Hong-Liang,  ZHAO Yue-Xia,  YANG Lei,  WU Jun-Fei,  LI Jin-Song. Development of An In-Situ Analyzer for Rapid Measurement of Dissolved Iron, Manganese and Sulfide in Deep Sea[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1977-1985. doi: 10.19756/j.issn.0253-3820.201379 shu

Development of An In-Situ Analyzer for Rapid Measurement of Dissolved Iron, Manganese and Sulfide in Deep Sea

  • Corresponding author: ZHAO Yue-Xia, zyx@ndsc.org.cn
  • Received Date: 17 July 2020
    Revised Date: 21 June 2021

    Fund Project: Supported by the National Key R&D Program of China (Nos.2016YFC0302201, 2016YFC0302204) and the National Natural Science Foundation of China (No.41306103).

  • Deep-sea in-situ chemical analyzer can obtain data with high frequency, which is very useful for scientific research and necessary for deep-sea transportation equipment. In this work, an in-situ analyzer was developed for automated determination of dissolved Fe, Fe, Mn and sulfide simultaneously in deep sea based on continuous flow analysis and spectrophotometric detection. The integrated system consisted of a pressure-resistant housing an oil-filled pressure-compensated vessel, and a self-developed hardware to control two multi-channel peristaltic pumps, four solenoid valves and a photoelectric acquisition module. Experimental conditions related to the analysis, including flow path module, spectrometric regent compositions and pH of buffer solution were evaluated and optimized. This deep-sea in-situ chemical analyzer was designed to work at the depth of 7000 m with a measuring frequency of 1 Hz, and showed a limit of detection as low as 0.013, 0.024, 0.014, and 0.012 μmol/L for dissolved Fe, Fe, Mn and sulfide, respectively. The calibration curves prepared in standard solutions were consistent over the linear range of 0.1-60, 0.2-100, 0.1-40 and 0.1-40 μmol/L for dissolved Fe, Fe, Mn and sulfide, respectively. After the test of shallow sea, hydrostatic pressure and tank test, this analyzer was implemented on tool shed of Jiaolong deep manned submersible, and performed sea trial. Spectra and signal intensity changes of the maximum absorption wavelength were obtained in-situ at the depth of 3196 m. This compact automatic analyzer was suitable for deep sea in-situ determination of the chemical environment of hydrothermal vent habitats.
  • 加载中
    1. [1]

      LUTHER G W, ROZAN T F, TAILLEFERT M, NUZZIO D B, MEO C A D, SHANK T M, LUTZ R A, CARY S C. Nature, 2001, 410(6830):813-816.

    2. [2]

      COALE K H, CHIN C S, MASSOTH G J, JOHNSON K S, BAKER E T. Nature, 1991, 352(6333):325-328.

    3. [3]

      CHIN C S, COALE K H, ELROD V A, JOHNSON K S, MASSOTH G J, BAKER E T. J. Geophys. Res.:Solid Earth, 1994, 99(B3):4969-4984.

    4. [4]

      BRIS N L, SARRADIN P, BIROT D, ALAYSE-DANET A. Mar. Chem., 2000, 72(1):1-15.

    5. [5]

      VUILLEMIN R, ROUX D L, DORVAL P, BUCAS K, SUDREAU J P, HAMON M, GALL C L, SARRADIN P. Deep-sea Res., Part I, 2009, 56(8):1391-1399.

    6. [6]

      OKAMURA K, KIMOTO H, SAEKI K, ISHIBASHI J, OBATA H, MARUO M, GAMO T, NAKAYAMA E, NOZAKI Y. Mar. Chem., 2001, 76(1-2):17-26.

    7. [7]

      OKAMURA K, HATANAKA H, KIMOTO H, SUZUKI M, SOHRIN Y, NAKAYAMA E, GAMO T, ISHIBASHI J. Geochem. J., 2004, 38(6):635-642.

    8. [8]

      KAWAGUCCI S, OKAMURA K, KIYOTA K, TSUNOGAI U, SANO Y, TAMAKI K, GAMO T. Geochem., Geophys., Geosyst., 2008, 9:Q100002.

    9. [9]

      KOHNEN W. Mar. Technol. Soc. J., 2013, 47(5):56-68.

    10. [10]

    11. [11]

      LIU F, CUI W C, LI X Y. Sci. China Earth Sci., 2010, 53(10):1407-1410.

    12. [12]

      CUI W. Mar. Technol. Soc. J., 2013, 47(3):37-54.

    13. [13]

    14. [14]

      WANG H, YANG Q, JI F, LILLEY M D, ZHOU H. Mar. Chem., 2012, 134:29-35.

    15. [15]

      MEYER D, PRIEN R D, DELLWIG O, WANIEK J J, SCHUFFENHAUER I, DONATH J, KRUGER S, PALLENTIN M, SCHULZBULL D E. Sensors, 2016, 16(12):2027.

    16. [16]

      MOORE T S, MULLAUGH K M, HOLYOKE R R, MADISON A S, YVCE M, LUTHER G W. Annu. Rev. Mar. Sci., 2009, 1:91-115.

    17. [17]

      PRIEN R D. Mar. Chem., 2007, 107(3):422-432.

    18. [18]

      MA J, ADORNATO L, BYRNE R H, YUAN D. TrAC-Trends Anal. Chem., 2014, 60:1-15.

    19. [19]

      MA J, YUAN D, LIN K, FENG S, ZHOU T, LI Q. Trends Environ. Anal. Chem., 2016, 10:1-10.

    20. [20]

      GRAND M M, LAESHUON A, FIETZ S, RESING J A, OBATA H, LUTHER G W, TAGLIABUE A, ACHTERBERG E P, MIDDAG R, TOVARSANCHEZ A, BOWIE A R. Front. Mar. Sci., 2019, 6:1-17.

    21. [21]

    22. [22]

      CHIN C S, JOHNSON K S, COALE K H. Mar. Chem., 1992:65-82.

    23. [23]

      BEZERRA M A, LEMOS V A, DE OLIVEIRA D M, NOVAES C G, BARRETO J A, ALVES J P S, CERQUEIRA U M F, SANTOS Q D, ARAUJO S A. Microchem. J., 2020, 155:104731.

    24. [24]

      CHEN Y, FENG S, HUANG Y, YUAN D. Talanta, 2015, 137:25-30.

    25. [25]

      FENG S, HUANG Y, YUAN D, ZHU Y, ZHOU T. Cont. Shelf Res. 2015, 92:37-43.

    26. [26]

      BRIS N L, GOVENAR B, GALL C L, FISHER C R. Mar. Chem., 2006, 98(2/4):167-182.

    27. [27]

      DEMINA L L. Trace Metals in the Water of the Hydrothermal Biotopes. In:DEMINA L, GALKIN S (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Cham:Springer, 2016:53-76.

    28. [28]

    29. [29]

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    6. [6]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    12. [12]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(15)
  • Abstract views(840)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return