Citation:
GUO Jia, LIU Jin-Hua, YANG Zhao-Wei, LI Yi, HE Cheng-Yan. Proteomics Analysis of Human Renal Clear Cell Carcinoma by Two MS2-based Label-free Approaches[J]. Chinese Journal of Analytical Chemistry,
;2020, 48(10): 1351-1358.
doi:
10.19756/j.issn.0253-3820.201373
-
Advanced renal cancer is not sensitive to chemotherapy or radiotherapy, and its effective treatment is very limited. At present, the recognition of specific and effective molecular targets for advanced renal cancer is far from enough. In this work, 2046 proteins were identified from the renal clear cell carcinoma and its adjacent normal tissues by using label-free quantitative proteomics approaches based on MS2 data. Two kinds of data processing methods, i.e. spectral counting and MS2 total ion current (MS2 TIC), were used to analyze the data derived from proteomics identification. The results showed that 144 differential proteins and 120 differential proteins were screened by MS2 TIC method and spectral counting method, respectively. A total of 147 differential proteins were screened by the two methods. Among them, there were 46 up-regulated proteins in tumor tissue, including annexin A4, laminin α-4 subunit, pyruvate kinase, ATP citrate synthetase and histone H1.5, carbonic anhydrase 9, etc.; there were 101 down-regulated proteins in tumor tissue, including beta subunit of electron transfer flavin, 3-ketoalkyl COA thiolase, villin-1, f subunit of V-type proton ATP synthetase, mitochondrial phosphate carrier protein, 8 subunit of cytochrome b-c1 complex, multidrug resistance protein 1, retinol dehydrogenase 2, uromodulin, etc. The results of some differential protein analyses were validated by using MS1-based quantitative method. The label-free quantification using MS2 data was used to analyze the proteome in renal clear cell carcinoma and its adjacent normal tissues. The differential proteins could be used as candidate biomarkers for diagnosis, treatment and prognosis of renal clear cell carcinoma, which could used to find the potential targets for effective treatment of advanced renal clear cell carcinoma.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[1]
-
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[3]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[4]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[5]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[6]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[7]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[8]
Zongyuan Chen , ChunSheng Shi , Yiwen Li , Ganlin Zu , Qiang Jin , Haishan Wang , Fujun Wang , Dekun Yan , Zhijun Guo , Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103
-
[9]
Yongmei Chen , Lidan Zhang , Shunlai Li , Chunting Zhang , Meng Cui , Qinghong Xu , Lan Jin , Chunchuang Li , Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017
-
[10]
Wei Huang , Weiwei Chen , Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075
-
[11]
Zhonghong Yan , Chunxia Li , Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138
-
[12]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[13]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[14]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[15]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[16]
Jiali Lin , Shuting Wu , Cheng Zheng , Zian Lin , Qiaohua Wei , Shoutian Zheng . Construction and Practice of National Chemical Experiment Teaching Demonstration Center in Local Universities under the Background of “Double First-Class”. University Chemistry, 2024, 39(7): 129-139. doi: 10.12461/PKU.DXHX202405043
-
[17]
Wenyi Li , Zhifeng Xu , Junbin Sun , Fangfang Mao , Mansheng Chen , Weihong Lu , Yang Liu , Geng Huang . Reform and Practice of the National First-Class Undergraduate Course “Inorganic Chemistry Experiment” in Local Normal Colleges. University Chemistry, 2024, 39(10): 389-395. doi: 10.12461/PKU.DXHX202402025
-
[18]
Yan Wang , Haolong Li , Chengji Zhao , Zheng Chen , Quan Lin , Yupeng Guo , Jianxin Mu , Kun Liu , Zhong-Yuan Lu , Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083
-
[19]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[20]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(1123)
- HTML views(104)