杂交链式反应介导的发光银纳米簇系统用于miRNA-21的信号放大检测

张丽 潘敏 邹芷乔 樊蕾 刘晓庆

引用本文: 张丽,  潘敏,  邹芷乔,  樊蕾,  刘晓庆. 杂交链式反应介导的发光银纳米簇系统用于miRNA-21的信号放大检测[J]. 分析化学, 2020, 48(9): 1193-1201. doi: 10.19756/j.issn.0253-3820.201144 shu
Citation:  ZHANG Li,  PAN Min,  ZOU Zhi-Qiao,  FAN Lei,  LIU Xiao-Qing. Hybridization Chain Reaction-Mediated Luminescent Silver Nanocluster System for Amplified Detection of miRNA-21[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1193-1201. doi: 10.19756/j.issn.0253-3820.201144 shu

杂交链式反应介导的发光银纳米簇系统用于miRNA-21的信号放大检测

  • 基金项目:

    本文系国家自然科学基金项目(No.81602610)和中央高校基本科研基金项目(No.2042018kf1006)资助

摘要: MicroRNAs(miRNAs)是多种疾病的生物标志物,同时也能为疾病治疗提供潜在靶点,因此,发展简单、快速、灵敏的miRNAs分析方法具有十分重要的意义。本研究结合杂交链式反应(HCR)高的信号放大能力和以DNA为模板合成的银纳米簇(DNA-AgNCs)优异的发光性能,构建了一种免标记的通用型荧光传感器,实现了miRNA-21的快速灵敏检测。将合成银纳米簇(AgNCs)的DNA模板封闭在HCR的反应物(发夹DNA)中,当存在靶标DNA时,发夹DNA的杂交链式组装反应被引发,释放出大量自由的AgNCs模板序列,进而引发近红外荧光DNA-AgNCs的合成,AgNCs的近红外荧光信号强度与引发链DNA的浓度成正相关。进一步通过在检测系统中引入一个封闭有HCR引发链序列的辅助发卡序列,建立通用型HCR-AgNCs传感分析系统,用于靶核酸分子检测。以miRNA-21为模型分析物,只在miRNA-21存在时,此辅助发卡才能被打开,并生成自由的HCR引发链,进而引发HCR反应和AgNCs的合成。本方法检测miRNA-21的线性范围为250 pmol/L~8 nmol/L,线性方程为(F-F0F0=-0.500+0.235 lg(C(pmol/L))(R2=0.9792),检出限(3σ/S)为19.9 pmol/L。这种基于HCR-AgNCs的检测方法具有免标记、简单、灵敏的优点,可作为通用的核酸传感平台,有望为疾病的临床诊断和治疗提供重要参考。

English


    1. [1]

      Bartel D P. Cell, 2004,116(2):281-297

    2. [2]

      Gebert L F R, MacRae I J. Nat. Rev. Mol. Cell Bio., 2019,20(1):21-37

    3. [3]

      Bracken C P, Scott H S, Goodall G J. Nat. Rev. Genet., 2016,17(12):719-732

    4. [4]

      Calin G A, Croce C M. Cancer Res., 2006,66(15):7390-7394

    5. [5]

      Hébert S S, Strooper B D. Trends Neurosci., 2009,32(4):199-206

    6. [6]

      Mendell J T, Olson E N. Cell, 2012,148(6):1172-1187

    7. [7]

      Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F. Chem. Sci., 2019,10(41):9597-9604

    8. [8]

      Cheng C J,Bahal R, Babar I A, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock D T, Engelman D M, Saltzman W M, Slack F J. Nature, 2015,518(7537):107-110

    9. [9]

      Sun Y, Wang Q, Mi L, Shi L, Li T. Anal. Chem., 2019,91(20):12948-12953

    10. [10]

      Liang M, Pan M, Hu J, Wang F, Liu X. ChemElectroChem, 2018,5(10):1380-1386

    11. [11]

      Chen Y X, Huang K J, Niu K X. Biosens. Bioelectron., 2018,99:612-624

    12. [12]

      Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Angew. Chem. Int. Ed., 2020,59(5):1897-1905

    13. [13]

      Wu R, Zhu Z, Xu X, Yu C, Li B. Nanoscale, 2019,11(21):10339-10347

    14. [14]

      Liu J, Du P, Zhang J, Shen H, Lei J. Chem. Commun., 2018,54(20):2550-2553

    15. [15]

      Wang L, Deng R, Li J. Chem. Sci., 2015,6(12):6777-6782

    16. [16]

      Zhou H, Liu J, Xu J J, Zhang S S, Chen H Y. Chem. Soc. Rev., 2018,47(6):1996-2019

    17. [17]

      Dirks R M, Pierce N A. Proc. Natl. Acad. Sci. USA, 2004,101(43):15275-15278

    18. [18]

      Bi S, Yue S, Zhang S. Chem. Soc. Rev., 2017,46(14):4281-4298

    19. [19]

      Yin F, Liu H, Li Q, Gao X, Yin Y, Liu D. Anal. Chem., 2016,88(9):4600-4604

    20. [20]

      Li Z, He X, Luo X, Wang L, Ma N. Anal. Chem., 2016,88(19):9355-9358

    21. [21]

      Lyu D, Li J, Wang X, Guo W, Wang E. Anal. Chem., 2019,91(3):2050-2057

    22. [22]

      New S Y, Lee S T, Su X D. Nanoscale, 2016,8(41):17729-17746

    23. [23]

      Yao Y, Li N, Zhang X, Machuki J O, Yang D, Yu Y, Li J, Tang D, Tian J, Gao F. ACS Appl. Mater. Interfaces, 2019,11(15):13991-14003

    24. [24]

      Chen M, Ma C, Yan Y. Anal. Methods, 2019,11(34):4348-4353

    25. [25]

      Pan M, Liang M, Sun J, Liu X, Wang F. Langmuir, 2018,34(49):14851-14857

    26. [26]

      Liu X, Wang F, Aizen R, Yehezkeli O, Willner I. J. Am. Chem. Soc., 2013,135(32):11832-11839

    27. [27]

      Wang J, Pan M, Wei J, Liu X, Wang F. Chem. Commun., 2017,53(96):12878-12881

    28. [28]

      Castañeda A D, Brenes N J, Kondajji A, Crooks R M. J. Am. Chem. Soc., 2017,139(22):7657-7664

    29. [29]

      Lan L, Wang R L, Liu L, Cheng L. Anal. Chim. Acta, 2019,1079:207-211

    30. [30]

      Wang Q, Yin B C, Ye B C. Biosens. Bioelectron., 2016,80:366-372

    31. [31]

      Pan W, Liu B, Gao X, Yu Z, Liu X, Li N, Tang B. Nanoscale, 2018,10(29):14264-14271

    32. [32]

      Lu S, Wang S, Zhao J, Sun J, Yang X. Anal. Chem., 2017,89(16):8429-8436

    33. [33]

      Sharma J, Rocha R C, Phipps M L, Yeh H C, Balatsky K A, Vu D M, Shreve A P, Werner J H, Martinez W J. Nanoscale, 2012,4(14):4107-4110

  • 加载中
计量
  • PDF下载量:  51
  • 文章访问数:  1426
  • HTML全文浏览量:  256
文章相关
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-05-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章