Citation:
LIAN Jiao-Yuan, ZHENG Su-Xia, XU Zhong-Bin, RUAN Xiao-Dong. Study on Co-flow Effect on Janus Droplet Generation Based on Step Emulsification[J]. Chinese Journal of Analytical Chemistry,
;2020, 48(1): 57-65.
doi:
10.19756/j.issn.0253-3820.191343
-
Continuous phase co-flow can increase the throughput and control flexibility of step emulsification, and has an important effect on droplet microfluidic. This study built a multi-channel step emulsification device to generate Janus droplets and to study the effects of both continuous phase co-flow and dispersed phase flow on the generation of Janus droplets. Firstly, Janus droplets were successfully prepared by the device, and the generation stability was optimized by using glass capillaries instead of microcapillary film based on their different wall contact angles at the channel outlet. Secondly, the effect on the generation of Janus droplet was studied by changing the flows of the continuous and dispersed phases, respectively. The result showed that the Janus droplets generation stability was almost independent of the two phases flow rates. When the continuous phase co-flow rate increased, the resulted Janus droplet diameter decreased, and the generation frequency increased. The droplet diameter decreased by 61% with the co-flow rate increasing from 0.01 mL/h to 30 mL/h. When the flow rate of dispersed phase increased, both the diameter and generation frequency of the generated Janus droplet increased. The droplet diameter increased by 63% as the dispersed phase flow increased from 0.1 mL/h to 3.0 mL/h. Within the scope of this study, the diameter and the generation frequency of the two components Janus droplet could be controlled in 638-1640 μm and 0.02-2.2 Hz, respectively. In addition, three-component droplets were generated successfully and steadily by a three-component droplet generation chip which was prepared based on the two-component droplet generation device. By changing the two phase flow rates, the droplet diameter and frequency could also be tuned on-line. When the co-flow rate increased from 1 mL/h to 30 mL/h, the droplet diameter decreased by 45%, and when the dispersed phase flow increased from 0.1 mL/h to 5 mL/h, the droplet diameter increased by 89%. The generation frequencies increased accordingly. Additionally, it was found that the co-flow effect had a greater impact on the generation of three-component droplet due to the result that the three-component droplet diameter changed greater than the two-component droplet when changing both the continuous and dispersed phase flows. Therefore, in this study, two-component and three-component droplets were generated by co-flowing step emulsification, which could be controlled on-line by changing the co-flow rate. The results of this study provided a basis and method for micro and trace research of chemical and analysis industry.
-
Keywords:
- Co-flow,
- Microfluidic,
- Janus droplet,
- Step emulsification,
- Chemical industry,
- Analysis
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[31]
-
[32]
-
[1]
-
-
-
[1]
Hengwei Wei , Liqiu Zhao , Jiqiang Geng , Xuebo Xu , Yingpeng Ma , Yuhao Liu , Mingzhe Han , Huan Jiao , Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022
-
[2]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[3]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[4]
Fan Yu , Aihua Li , Yun Liu , Tianrong Zhu , Liang Wang , Junhui Xu , Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037
-
[5]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[6]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[7]
Tongqi Ye , Qi Wang , Yuewen Ye , Yanqing Wang , Hongyang Zhou , Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116
-
[8]
Yan Zhao , Weiping Luo , Haoran Liu , Yongqing Kuang , Zhaoyang Wu , Weijun Yang , Yongjun Li , Dongcai Guo . Construction and Practice of the Chemistry and Chemical Engineering Experimental Teaching Center of Hunan University. University Chemistry, 2024, 39(7): 147-152. doi: 10.12461/PKU.DXHX202405059
-
[9]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[10]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[11]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[12]
Qiuping Liu , Asan Yang , Jinfa Cai , Ling Liu , Weirong Ji , Genrong Qiang . Developing a New Paradigm for Integrated Science and Education & Multidimensional Connectivity in Chemistry and Chemical Engineering Experimental Education: A Case Study at the National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Zhejiang University of Technology). University Chemistry, 2024, 39(7): 1-7. doi: 10.3866/PKU.DXHX202404001
-
[13]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[14]
Yan Zhang , Ping Wang , Tiebo Xiao , Futing Zi , Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017
-
[15]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[16]
Yongmei Chen , Lidan Zhang , Shunlai Li , Chunting Zhang , Meng Cui , Qinghong Xu , Lan Jin , Chunchuang Li , Zhi Lv . Development of a National First-Class Course of “University Chemistry Experiment” Based on MOOCs. University Chemistry, 2024, 39(7): 8-12. doi: 10.3866/PKU.DXHX202404017
-
[17]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[18]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
-
[19]
Bei Liu , Heng Li , Mei Yang , Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010
-
[20]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(547)
- HTML views(92)