Citation: Jia-Ze CHEN, Rong-Chuan ZHUANG, Jin-Xiao MI, Ya-Xi HUANG. Ni2MTe2O2(PO4)2(OH)4 (M = Ni, Zn): Synthesis, Crystal Structure, and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1439-1448. doi: 10.14102/j.cnki.0254–5861.2011–3194 shu

Ni2MTe2O2(PO4)2(OH)4 (M = Ni, Zn): Synthesis, Crystal Structure, and Magnetic Properties

  • Corresponding author: Ya-Xi HUANG, yaxihuang@xmu.edu.cn
  • Received Date: 26 March 2021
    Accepted Date: 7 June 2021

    Fund Project: the National Natural Science Foundation of China 21201144the Natural Science Foundation of Fujian Province 2018J07006

Figures(9)

  • Two isostructural tellurite phosphates Ni2MTe2O2(PO4)2(OH)4 (M = Ni, Zn) have been synthesized via hydrothermal method. Both of them crystalize in monoclinic space group C2/m (No. 12). For Ni2ZnTe2O2(PO4)2(OH)4, a = 19.3247(10), b = 5.9697(3), c = 4.7737(2) Å, β = 103.637(5)°, V = 535.18(5) Å3, Z = 2, Mr = 727.94, S = 1.103, Dc = 4.517 g·cm−3, μ(Mo) = 11.434 mm–1 and F(000) = 672, the final R = 0.0369 and wR = 0.1086 for 639 observed reflections with I > 2σ(I). The crystal structure of Ni2MTe2O2(PO4)2(OH)4 (M = Ni, Zn) features a 3D framework composed of [Ni2O2(PO4)2]6− layers interconnected by [MTe2O2(OH)4]2+ single chains. Different magnetic susceptibility results at low temperature of the two title compounds confirm that Zn(1) completely occupies the Ni(2) position but not partially substitutes both Ni(1) and Ni(2) position atoms. Additionally, the acentric TeO3(OH)2 tetragonal pyramids are aligned in an antiparallel manner, resulting in the crystallization of centrosymmetric (C2/m) crystal structure instead of the non-centrosymmetric crystal structure. The investigation of the origin of centrosymmetric crystal structure with strong dipole moment units provides deeper understanding for future rational design for non-centrosymmetric crystal structure.
  • 加载中
    1. [1]

      Halasyamani, P. S.; Poeppelmeier, K. R. Noncentrosymmetric oxides. Chem. Mater. 1998, 10, 2753–2769.  doi: 10.1021/cm980140w

    2. [2]

      Guesdon, A.; Raveau, B. A series of Mo(VI) monophosphates involving the lone pair cation Te(Ⅳ): A2TeMo2O6(PO4)2 (A = K, Rb, Tl, Cs). Chem. Mater. 2000, 12, 2239–2243.  doi: 10.1021/cm000035y

    3. [3]

      Halasyamani, P. S. Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 2004, 16, 3586–3592.  doi: 10.1021/cm049297g

    4. [4]

      Mao, J. G.; Jiang, H. L.; Kong, F. Structures and properties of functional metal selenites and tellurites. Inorg. Chem. 2008, 47, 8498–8510.  doi: 10.1021/ic8005629

    5. [5]

      Ok, K. M.; Orzechowski, J.; Halasyamani, P. S. Synthesis, structure, and characterization of two new layered mixed-metal phosphates, BaTeMO4(PO4) (M = Nb5+ or Ta5+). Inorg. Chem. 2004, 43, 964–968.  doi: 10.1021/ic0350335

    6. [6]

      Ok, K. M.; Halasyamani, P. S. Asymmetric cationic coordination environments in new oxide materials:  synthesis and characterization of Pb4Te6M10O41 (M = Nb5+ or Ta5+). Inorg. Chem. 2004, 43, 4248–4253.  doi: 10.1021/ic049534h

    7. [7]

      Kim, M. K.; Kim, S. H.; Chang, H. Y.; Halasyamani, P. S.; Ok, K. M. New noncentrosymmetric tellurite phosphate material: synthesis, characterization, and calculations of Te2O(PO4)2. Inorg. Chem. 2010, 49, 7028–7034.  doi: 10.1021/ic100706n

    8. [8]

      Tang, X. Y.; Mi, J. X.; Zhuang, R. C.; Wang, S. H.; Wu, S. F.; Pan, Y. M.; Huang, Y. X. Rational design and synthesis of a deep-ultraviolet nonlinear optical fluorinated orthophosphate: BaZn(PO4)F. Inorg. Chem. 2019, 58, 4508–4514.  doi: 10.1021/acs.inorgchem.9b00073

    9. [9]

      Tang, R. L.; Hu, C. L.; Wu, B. L.; Fang, Z.; Chen, Y.; Mao, J. G. Cs2Bi2O(Ge2O7) (CBGO): a larger SHG effect induced by synergistic polarizations of BiO5 polyhedra and GeO4 tetrahedra. Angew. Chem. Int. Ed. 2019, 58, 15358–15361.  doi: 10.1002/anie.201909735

    10. [10]

      Wen, M.; Hu, C.; Wu, H. P.; Yang, Z. H.; Yu, H. H.; Pan, S. L. Three non-centrosymmetric bismuth phosphates, Li2ABi(PO4)2 (A = K, Rb, and Cs): effects of cations on the crystal structure and SHG response. Inorg. Chem. Front. 2020, 7, 3364–3370.  doi: 10.1039/D0QI00778A

    11. [11]

      Ma, Y. X.; Gong, Y. P.; Hu, C. L.; Kong, F.; Mao, J. G. BiGa(SeO3)3: a phase matchable SHG material achieved by cation substitution. Inorg. Chem. 2020, 59, 7852–7859.  doi: 10.1021/acs.inorgchem.0c00984

    12. [12]

      Wen, M.; Hu, C.; Yang, Z. H.; Wu, X. H.; Pan, S. L. K2TeP2O8: a new telluro-phosphate with a pentagonal Te-P-O layer structure. Dalton Trans. 2018, 47, 9453–9458.  doi: 10.1039/C8DT01576G

    13. [13]

      Pearson, R. G. The second-order Jahn-Teller effect. J. Mol. Struct. Theochem. 1983, 12, 25–34.

    14. [14]

      Ok, K. M.; Halasyamani, P. S. Mixed-metal tellurites: synthesis, structure, and characterization of Na1.4Nb3Te4.9O18 and NaNb3Te4O16. Inorg. Chem. 2005, 44, 3919–3925.  doi: 10.1021/ic050256b

    15. [15]

      Christy, A. G.; Mills, S. J.; Kampf, A. R. A review of the structural architecture of tellurium oxycompounds. Mineral. Mag. 2016, 80, 415–545.  doi: 10.1180/minmag.2016.080.093

    16. [16]

      Li, L.; Zhuang, R. C.; Mi, J. X.; Huang, Y. X. A new modification of tellurite phosphate β-Te3O3(PO4)2. Chin. J. Struct. Chem. 2018, 37, 1417–1425.

    17. [17]

      Kim, J. H.; Halasyamani, P. S. A rare multi-coordinate tellurite, NH4ATe4O9·2H2O (A = Rb or Cs): the occurrence of TeO3, TeO4, and TeO5 polyhedra in the same material. J. Solid State Chem. 2008, 181, 2108–2112.  doi: 10.1016/j.jssc.2008.04.032

    18. [18]

      Mayer, H.; Weil, M. Synthesis and crystal structure of Te3O3(PO4)2, a compound with 5-fold coordinate tellurium (Ⅳ). Z. Anorg. Allg. Chem. 2003, 629, 1068–1072.  doi: 10.1002/zaac.200300036

    19. [19]

      Ok, K. M.; Halasyamani, P. S. Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, Ba2TeO(PO4)2. J. Solid State Chem. 2006, 179, 1345–1350.  doi: 10.1016/j.jssc.2006.01.045

    20. [20]

      Schmidt, P.; Dallmann, H.; Kadner, G.; Krug, J.; Philipp, F.; Teske, K. The thermochemical behaviour of Te8O10(PO4)4 and its use for phosphide telluride synthesis. Z. Anorg. Allg. Chem. 2009, 635, 2153–2161.  doi: 10.1002/zaac.200900350

    21. [21]

      Zimmermann, I.; Kremer, R. K.; Johnsson, M. Synthesis, crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4. J. Solid State Chem. 2011, 184, 3080–3084.  doi: 10.1016/j.jssc.2011.09.023

    22. [22]

      Xia, M. J.; Li, R. K. Structural variety in zinc telluro-phosphates: syntheses, crystal structures and characterizations of Sr2Zn3Te2P2O14, Pb2Zn3Te2P2O14 and Ba2Zn2TeP2O11. Dalton Trans. 2016, 45, 7492–7499.  doi: 10.1039/C6DT00058D

    23. [23]

      Shen, Y. G.; Zhao, S. G.; Luo, J. H. Study on nonlinear optical properties of Te2HPO7 crystal. J. Synth. Cryst. 2016, 45, 1487–1491.

    24. [24]

      Li, Z.; Zhang, S. Z.; Yin, W. L.; Lin, Z. S.; Yao, J. Y.; Wu, Y. C. Na3Ca4(TeO3)(PO4)3: a new noncentrosymmetric tellurite phosphate with fascinating multimember-ring architectures and intriguing nonlinear optical performance. Dalton Trans. 2018, 47, 17198–17201.  doi: 10.1039/C8DT04354J

    25. [25]

      Alcock, N. W.; Harrision, W. D. Refinement of the structure of tellurium phosphate Te2O3HPO4. Acta Crystallogr. Sect. B: Struct. Sci. 1982, 38, 1809–1811.  doi: 10.1107/S0567740882007274

    26. [26]

      Xia, M. J.; Shen, S. P.; Lu, J.; Sun, Y.; Li, R. K. Ba2Cu2Te2P2O13: a new telluro-phosphate with S = 1/2 heisenberg chain. J. Solid State Chem. 2015, 230, 75–79.  doi: 10.1016/j.jssc.2015.06.023

    27. [27]

      Zhao, M.; Sun, Y. J.; Wu, Y. D.; Mei, D. J.; Wen, S. G.; Doert, T. NaTePO5, SrTeP2O8 and Ba2TeP2O9: three tellurite-phosphates with large birefringence. J. Alloys Compd. 2021, 854, 157243–11.  doi: 10.1016/j.jallcom.2020.157243

    28. [28]

      Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    29. [29]

      Farrugia, L. J. Wingx: suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838.  doi: 10.1107/S0021889899006020

    30. [30]

      Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    31. [31]

      Liu, L. C.; Ren, W. J.; Huang, Y. X.; Pan, Y. M.; Mi, J. X. Canted antiferromagnetism in KNi3[PO3(F, OH)]2[PO2(OH)2]F2 with a stair-case kagome lattice. J. Solid State Chem. 2017, 254, 160–165.  doi: 10.1016/j.jssc.2017.07.011

    32. [32]

      Brese, N. E.; Okeeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B: Struct. Sci. 1991, 47, 192–197.  doi: 10.1107/S0108768190011041

    33. [33]

      Maggard, P. A.; Nault, T. S.; Stern, C. L.; Poeppelmeier, K. R. Alignment of acentric MoO3F33- anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J. Solid State Chem. 2003, 175, 27–33.  doi: 10.1016/S0022-4596(03)00090-2

    34. [34]

      Yang, D.; Zhuang, R. C.; Mi, J. X.; Huang, Y. X. Two alkali metal germanophosphates Na3[Ge(OH)(PO4)2]·2H2O and Li2Na[GeO(HPO4)(PO4)]: crystal structures and thermal stability. Chin. J. Struct. Chem. 2021, 40, 114–124.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(1)
  • Abstract views(258)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return