Citation: Shuang LI, Zi-Hao WEN, Min-Yi ZHANG. Theoretical Study of Iron Porphyrin Imine Specie of P411 Enzyme: Electronic Structure and Regioselectivity of C(sp3)-H Primary Amination[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1411-1422. doi: 10.14102/j.cnki.0254–5861.2011–3191 shu

Theoretical Study of Iron Porphyrin Imine Specie of P411 Enzyme: Electronic Structure and Regioselectivity of C(sp3)-H Primary Amination

  • Corresponding author: Min-Yi ZHANG, myzhang@fjirsm.ac.cn
  • Received Date: 24 March 2021
    Accepted Date: 8 July 2021

Figures(14)

  • The cytochrome P411 enzyme is a variant of cytochrome P450BM3 from Bacillus megaterium whose active site is an iron porphyrin imine ([Fe(Por)(NH)]-) specie. This specie has been reported to successfully promote the primary amination of benzylic and allylic C(sp3)-H bonds. We employed density functional theory to study the electronic structure of the active site of P411 enzyme and the primary amination of C-H bond reaction that it catalyzes. The calculated spin densities and orbital values indicate the existence of resonance in this specie; namely, [(por)(–OH)Fe–N2-–H]- ↔ [(por)(–OH)Fe–N•-–H]-. The amination of C(sp3)-H bonds consists of two main reaction steps: hydrogen-atom abstraction and radical recombination, and the former is demonstrated to be the rate-determining step. Furthermore, we studied the regioselectivity of the amination of primary and secondary C(sp3)-H bonds. Our calculations indicated that the secondary C(sp3)-H bonds of the substrate would be more favored for the activation by P411 enzyme. These results provide valuable information for understanding the properties and selectivity of C-H/C-N bond-activation reactions catalyzed by the P411 enzyme or other similar enzymes.
  • 加载中
    1. [1]

      Bräse, S. Amino group chemistry: from synthesis to the life sciences. ChemBioChem. 2008, 9, 15093-1509.

    2. [2]

      Davies, H. M. L.; Morton, D. Collective approach to advancing C-H functionalization. ACS Central Sci. 2017, 3, 936-943.  doi: 10.1021/acscentsci.7b00329

    3. [3]

      Yang, Y.; Cho, I.; Qi, X.; Liu, P.; Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp(3))-H bonds. Nat. Chem. 2019, 11, 987-993.  doi: 10.1038/s41557-019-0343-5

    4. [4]

      Hennessy, E. T.; Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C-H bond amination. Science 2013, 340, 591-595.  doi: 10.1126/science.1233701

    5. [5]

      Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kurti, L.; Falck, J. R. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 2016, 353, 1144-1147.  doi: 10.1126/science.aaf8713

    6. [6]

      Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia. Org. Lett. 2002, 4, 2055-2058.  doi: 10.1021/ol0200605

    7. [7]

      Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Accounts Chem. Res. 2008, 41, 1534-1544.  doi: 10.1021/ar800098p

    8. [8]

      Surry, D. S.; Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem., Int. Ed Chem. 2008, 47, 6338-6361.  doi: 10.1002/anie.200800497

    9. [9]

      Dydio, P.; Key, H. M.; Hayashi, H.; Clark, D. S.; Hartwig, J. F. Chemoselective, enzymatic C-H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 2017, 139, 1750-1753.  doi: 10.1021/jacs.6b11410

    10. [10]

      Hyster, T. K.; Farwell, C. C.; Buller, A. R.; McIntosh, J. A.; Arnold, F. H. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination. J. Am. Chem. Soc. 2014, 136, 15505-15508.  doi: 10.1021/ja509308v

    11. [11]

      McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem., Int. Edit. 2013, 52, 9309-9312.  doi: 10.1002/anie.201304401

    12. [12]

      Singh, R.; Bordeaux, M.; Fasan, R. P450-Catalyzed intramolecular sp3 C-H amination with arylsulfonyl azide substrates. ACS Catal. 2014, 4, 546-552.  doi: 10.1021/cs400893n

    13. [13]

      Singh, R.; Kolev, J. N.; Sutera, P. A.; Fasan, R. Enzymatic C(sp3)-H amination: P450-catalyzed conversion of carbonazidates into oxazolidinones. ACS Catal. 2015, 5, 1685-1691.  doi: 10.1021/cs5018612

    14. [14]

      Zalatan, D. N.; Du Bois, J. Metal-catalyzed oxidations of C-H to C-N bonds. C-H activation. Topics in Current Chemistry-Series. 2010, 292, 347-378.

    15. [15]

      Davies, H. M. L.; Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 2008, 451, 417-424.  doi: 10.1038/nature06485

    16. [16]

      Collet, F.; Lescot, C.; Dauban, P. Catalytic C-H amination: the stereoselectivity issue. Chem. Soc. Rev. 2011, 40, 1926-1936.  doi: 10.1039/c0cs00095g

    17. [17]

      Jeffrey, J. L.; Sarpong, R. Intramolecular C(sp3)-H amination. Chem. Sci. 2013, 4, 4092-4106.  doi: 10.1039/c3sc51420j

    18. [18]

      Hartwig, J. F. Evolution of C-H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2-24.  doi: 10.1021/jacs.5b08707

    19. [19]

      Godula, K.; Sames, D. C-H bond functionalization in complex organic synthesis. Science 2006, 312, 67-72.  doi: 10.1126/science.1114731

    20. [20]

      Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C-H mond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem., Int. Edit. 2012, 51, 8960-9009.  doi: 10.1002/anie.201201666

    21. [21]

      Romero, N. A.; Margrey, K. A.; Tay, N. E. Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. Science 2015, 349, 1326-1330.  doi: 10.1126/science.aac9895

    22. [22]

      Zheng, Y. W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q. Y.; Wu, L. Z.; Tung, C. H. Photocatalytic hydrogen-evolution cross-couplings: benzene C-H amination and hydroxylation. J. Am. Chem. Soc. 2016, 138, 10080-10083.  doi: 10.1021/jacs.6b05498

    23. [23]

      Morofuji, T.; Shimizu, A.; Yoshida, J. I. Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. J. Am. Chem. Soc. 2013, 135, 5000-5003.  doi: 10.1021/ja402083e

    24. [24]

      Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Copper-mediated C(sp2)-H amination using TMSN3 as a nitrogen source: redox-neutral access to primary anilines. Org. Chem. Front. 2014, 1, 777-781.  doi: 10.1039/C4QO00143E

    25. [25]

      Tezuka, N.; Shirnojo, K.; Hirano, K.; Komagawa, S.; Yoshida, K.; Wang, C.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. Direct hydroxylation and amination of arenes via deprotonative cupration. J. Am. Chem. Soc. 2016, 138, 9166-9171.  doi: 10.1021/jacs.6b03855

    26. [26]

      Legnani, L.; Cerai, G. P.; Morandi, B. Direct and practical synthesis of primary anilines through iron-catalyzed C-H bond amination. ACS Catal. 2016, 6, 8162-8165.  doi: 10.1021/acscatal.6b02576

    27. [27]

      Liu, J.; Wu, K.; Shen, T.; Liang, Y.; Zou, M.; Zhu, Y.; Li, X.; Li, X.; Jiao, N. Fe-catalyzed amination of (hetero)arenes with a redox-active aminating reagent under mild conditions. Chem. Eur. J. 2017, 23, 563-567.  doi: 10.1002/chem.201605476

    28. [28]

      Kim, H.; Heo, J.; Kim, J.; Baik, M. H.; Chang, S. Copper-mediated amination of aryl C-H bonds with the direct use of aqueous ammonia via a disproportionation pathway. J. Am. Chem. Soc. 2018, 140, 14350-14356.  doi: 10.1021/jacs.8b08826

    29. [29]

      Anugu, R. R.; Munnuri, S.; Falck, J. R. Picolinate-directed arene meta-C-H amination via FeCl3 catalysis. J. Am. Chem. Soc. 2020, 142, 5266-5271.  doi: 10.1021/jacs.9b13753

    30. [30]

      Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev. 2010, 110, 949-1017.  doi: 10.1021/cr900121s

    31. [31]

      Hyster, T. K.; Arnold, F. H. P450BM3-axial mutations: a gateway to non-natural reactivity. Isr. J. Chem. 2015, 55, 14-20.  doi: 10.1002/ijch.201400080

    32. [32]

      Jia, Z. J.; Gao, S.; Arnold, F. H. Enzymatic primary amination of benzylic and allylic C(sp3)-H bonds. J. Am. Chem. Soc. 2020, 142, 10279-10283.  doi: 10.1021/jacs.0c03428

    33. [33]

      Coelho, P. S.; Wang, Z. J.; Ener, M. E.; Baril, S. A.; Kannan, A.; Arnold, F. H.; Brustad, E. M. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 2013, 9, 485-U33.  doi: 10.1038/nchembio.1278

    34. [34]

      Wang, J.; Gao, H.; Yang, L.; Gao, Y. Q. Role of engineered iron-haem enzyme in reactivity and stereoselectivity of intermolecular benzylic C-H bond amination. ACS Catal. 2020, 10, 5318-5327.  doi: 10.1021/acscatal.0c00248

    35. [35]

      Li, P.; Merz, K. M. Jr. MCPB. py: a python based metal center parameter builder. J. Chem. Inf. Model. 2016, 56, 599-604.  doi: 10.1021/acs.jcim.5b00674

    36. [36]

      Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174.  doi: 10.1002/jcc.20035

    37. [37]

      Li, H.; Robertson, A. D.; Jensen, J. H. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005, 61, 704-721.  doi: 10.1002/prot.20660

    38. [38]

      Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.  doi: 10.1016/0263-7855(96)00018-5

    39. [39]

      Izaguirre, J. A.; Catarello, D. P.; Wozniak, J. M.; Skeel, R. D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001, 114, 2090-2098.  doi: 10.1063/1.1332996

    40. [40]

      Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690.  doi: 10.1063/1.448118

    41. [41]

      Shahrokh, K.; Orendt, A.; Yost, G. S.; Cheatham, T. E. Ⅲ. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 2012, 33, 119-133.  doi: 10.1002/jcc.21922

    42. [42]

      Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78.  doi: 10.1002/wcms.81

    43. [43]

      Ahmad, F.; Alam, M. J.; Alam, M.; Azaz, S.; Parveen, M.; Park, S.; Ahmad, S. Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative. J. Mol. Struct. 2018, 1151, 327-342.  doi: 10.1016/j.molstruc.2017.09.056

    44. [44]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378-6396.  doi: 10.1021/jp810292n

    45. [45]

      Li, X.; Dong, L.; Liu, Y. Theoretical study of iron porphyrin nitrene: formation mechanism, electronic nature, and intermolecular C-H Amination. Inorg. Chem. 2020, 59, 1622-1632.  doi: 10.1021/acs.inorgchem.9b02216

  • 加载中
    1. [1]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    4. [4]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    5. [5]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    12. [12]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    13. [13]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    14. [14]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    15. [15]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    16. [16]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    17. [17]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    18. [18]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    19. [19]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    20. [20]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

Metrics
  • PDF Downloads(1)
  • Abstract views(261)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return