Citation: Ming WANG, Xiao-Mei WANG, Ming-Yu CHEN, Cheng LIU, Ge DING, Xin-Hui ZHOU. A Water-stable Tetranuclear Cd(Ⅱ) Bicyclic Complex Used for the Picric Acid Detection[J]. Chinese Journal of Structural Chemistry, ;2021, 40(11): 1461-1468. doi: 10.14102/j.cnki.0254–5861.2011–3182 shu

A Water-stable Tetranuclear Cd(Ⅱ) Bicyclic Complex Used for the Picric Acid Detection

  • Corresponding author: Xin-Hui ZHOU, iamxhzhou@njupt.edu.cn
  • Received Date: 18 March 2021
    Accepted Date: 8 June 2021

    Fund Project: the National Natural Science Foundation of China 21973047Jiangsu Province Double Innovation Talent Program 090300014001

Figures(7)

  • By solvothermal reaction of Cd(Ⅱ) with organic ligand N, N΄-bis(3, 5-dicarboxylphenyl)-thiophene-2, 5-dicarboxamide (H4L), a water-stable complex [Cd4(H2L)4(H2O)10]·2CH3OH·8H2O·4DMF (1, C102H120Cd4N12O64S4) has been successfully synthetized (DMF = N, N-dimethylformamide). 1 crystallizes in the triclinic space group of P\begin{document}$ \overline 1 $\end{document} with a = 11.815(7), b = 16.209(9), c = 16.742(9) Å, α = 82.224(13)º, β = 76.741(13)º, γ = 70.313(12)º, V = 2932(3) Å3, Mr = 3115.93, Z = 1, F(000) = 1584, Dc = 1.765 Mg/cm3, µ = 0.901 mm−1, GOOF = 1.101, the final R = 0.0391 and wR = 0.1297 for 9007 observed reflections (I > 2σ(I)). 1 is a tetranuclear Cd(Ⅱ) bicyclic complex with strong ligand-based blue emission and can stably exist in aqueous solutions over the pH range of 2-11. 1 exhibits high sensitivity, selectivity and anti-interference capability for picric acid (PA) detection in aqueous solution by luminescent quenching. The value of quenching constant (Ksv) is 3.2 × 104 M-1 within the PA concentration range of 0~40 μM and the detection limit is 6.89 × 10-7 M. Lastly, we went into depth on possible mechanism of the luminescent quenching.
  • 加载中
    1. [1]

      Xu, T. Y.; Li, J. M.; Han, Y. H.; Wang, A. R.; He, K. H.; Shi, Z. F. A new 3D four-fold interpenetrated dia-like luminescent Zn(Ⅱ)-based metal-organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol. New J. Chem. 2020, 44, 4011–4022.  doi: 10.1039/C9NJ06056A

    2. [2]

      Zhuang, X. R.; Zhang, X.; Zhang, N. X.; Wang, Y.; Zhao, L. Y.; Yang, Q. F. Novel multifunctional Zn metal-organic framework fluorescent probe demonstrating unique sensitivity and selectivity for detection of PA and Fe3+ ions in water solution. Cryst. Growth Des. 2019, 19, 5729–5736.  doi: 10.1021/acs.cgd.9b00704

    3. [3]

      Jiang, W.; Yang, J. Q.; Yan, G. S.; Zhou, S.; Liu, B.; Qiao, Y.; Zhou, T. Y.; Wang, J. J.; Che, G. B. A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition. Inorg. Chem. Commun. 2020, 3, 113, 10770.

    4. [4]

      Ren, S. S.; Jiang, W.; Wang, Q, W.; Li, Z. M.; Qiao, Y.; Che, G. B. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4, 5-f)-(1, 10)phenanthroline ligand. RSC Adv. 2019, 9, 3102–3112.  doi: 10.1039/C8RA09207A

    5. [5]

      Zhu, J. Y.; Xia, T. F.; Cui, Y. J.; Yang, Y.; Qian, G. D. A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. J. Solid State Chem. 2019, 270, 317–323.  doi: 10.1016/j.jssc.2018.11.032

    6. [6]

      Fan, K.; Bao, S. S.; Nie, W. X.; Liao, C. H.; Zheng, L. M. Iridium(Ⅲ)-based metal-organic frameworks as multiresponsive luminescent sensors for Fe3+, Cr2O72–, and ATP2– in aqueous media. Inorg. Chem. 2018, 57, 1079–1089.  doi: 10.1021/acs.inorgchem.7b02513

    7. [7]

      Luz, I.; Parvathikar, S.; Carpenter, M.; Bellamy, T.; Amato, K. MOF-derived nanostructured catalysts for low-temperature ammonia synthesis. J. Carpenter, M. Lail, Catal. Sci. Technol. 2020, 10, 105–112.  doi: 10.1039/C9CY01303B

    8. [8]

      Li, Y. Z.; Wang, G. D.; Yang, H. Y.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Novel cage-like MOF for gas separation, CO2 conversion and selective adsorption of an organic dye. Inorg. Chem. Front. 2020, 7, 746–755.  doi: 10.1039/C9QI01262A

    9. [9]

      Guo, H.; Wu, N.; Xue, R.; Liu, H.; Li, L.; Wang, M. Y.; Yao, W. Q.; Li, Q.; Yang, W. Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+ and Al3+ ions and nitrotoluene. Colloid Surface A 2020, 585, 124094.  doi: 10.1016/j.colsurfa.2019.124094

    10. [10]

      Moradi, E.; Rahimi, R.; Farahani, Y. D.; Safarifard, V. Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as a luminescent sensor for highly selective sensing of Cd2+ and Br ions and THF small molecule. J. Solid State Chem. 2020, 282, 121103.  doi: 10.1016/j.jssc.2019.121103

    11. [11]

      Igoa, F.; Peinado, G.; Suescun, L.; Kremer, C.; Torres, J. Design of a white-light emitting material based on a mixed-lanthanide metal organic framework. J. Solid State Chem. 2019, 279, 120925.  doi: 10.1016/j.jssc.2019.120925

    12. [12]

      Zhan, Z. Y.; Liang, X. Y.; Zhang, X. L.; Jia, Y. J.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43− ions, and nitroaromatic explosives. Dalton Trans. 2019, 48, 1786–1794.  doi: 10.1039/C8DT04653K

    13. [13]

      Xiao, J. N.; Liu, J. J.; Gao, X. C.; Ji, G. F.; Wang, D. B.; Liu, Z. L. A multi-chemosensor based on Zn-MOF: ratio-dependent color transition detection of Hg(Ⅱ) and highly sensitive sensor of Cr (VI). Sensor Actuat. B-Chem. 2018, 269, 164–172.  doi: 10.1016/j.snb.2018.04.129

    14. [14]

      Xu, H.; Xiao, Y. Q.; Rao, X. T.; Dou, Z. S.; Li, W. F.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. A metal-organic framework for selectively sensing of PO43− anion in aqueous solution. J Alloys Compd. 2011, 509, 2552–2554.  doi: 10.1016/j.jallcom.2010.11.087

    15. [15]

      Qin, Y. R.; Ge, Y.; Zhang, S. S.; Sun, H.; Jing, Y.; Li, Y. H.; Liu, W. A series of Ln4 clusters: Dy4 single molecule magnet and Tb4 multi-responsive luminescent sensor for Fe3+, CrO42−/Cr2O72− and 4-nitroaniline. RSC Adv. 2018, 8, 12641–12652.  doi: 10.1039/C8RA01485J

    16. [16]

      Yang, Y.; Chen, L.; Jiang, F. L; Wu, M. Y.; Pang, J. D.; Wan, X. Y.; Hong, M. C. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. CrystEngComm. 2019, 21, 321–328.  doi: 10.1039/C8CE01875H

    17. [17]

      Cui, Y.; Chen, F.; Yin, X. B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens Bioelection 2019, 135, 208–215.  doi: 10.1016/j.bios.2019.04.008

    18. [18]

      Yu, L.; Zheng, Q. T.; Wu, D.; Xiao, Y. X. Bimetal-organic framework nanocomposite based point-of-care visual ratiometric fluorescence pH microsensor for strong acidity. Sensor Actuat. B-Chem. 2019, 294, 199–205.  doi: 10.1016/j.snb.2019.05.037

    19. [19]

      Liu, W.; Wang, Y. L.; Song, L. P.; Silver, M. A.; Xie, J.; Zhang, L. M.; Chen, L. H.; Diwu, J.; Chai, Z. F.; Wang, S. Efficient and selective sensing of Cu2+ and UO22+ by a europium metal-organic framework. Talanta. 2019, 196, 515–522.  doi: 10.1016/j.talanta.2018.12.088

    20. [20]

      Zhou, X. H.; Chen, Q. Q.; Liu, B. L.; Li, L.; Yang, T.; Huang, W. Syntheses, structures and magnetic properties of nine coordination polymers based on terphenyl-tetracarboxylic acid ligands. Dalton Trans. 2017, 46, 430–444.  doi: 10.1039/C6DT04270H

    21. [21]

      Fu, H. R.; Wu, X. X.; Ma, L. F.; Wang, F.; Zhang, J. Dual-emission SG7@MOF sensor via SC–SC transformation: enhancing the formation of excimer emission and the range and sensitivity of detection. ACS Appl. Mater. Interfaces 2018, 10, 18012–18020.  doi: 10.1021/acsami.8b05614

    22. [22]

      Luo, J.; Liu, B. S.; Zhang, X. R.; Liu, R. T. A Eu3+ post-functionalized metal-organic framework as fluorescent probe for highly selective sensing of Cu2+ in aqueous media. J. Mol. Stuct. 2019, 1177, 444–448.  doi: 10.1016/j.molstruc.2018.09.091

    23. [23]

      Wu, K. Y.; Qin, L.; Fan, C.; Cai, S. L.; Zhang, T. T.; Chen, W. H.; Tang, X. Y.; Chen, J. X. Sequential and recyclable sensing of Fe3+ and ascorbic acid in water with a terbium(Ⅲ)-based metal-organic framework. Dalton Trans. 2019, 48, 8911–8919.  doi: 10.1039/C9DT00871C

    24. [24]

      Feng, X.; Guo, N.; Li, R. F.; Chen, H. P.; Ma, L. F.; Li, Z. J.; Wang, L. Y. A facile route for tuning emission and magnetic properties by controlling lanthanide ions in coordination polymers incorporating mixed aromatic carboxylate ligands. J. Solid State Chem. 2018, 268, 22–29.  doi: 10.1016/j.jssc.2018.08.017

    25. [25]

      Li, R.; Qu, X. L.; Zhang, Y. H.; Han, H. L.; Li, X. Lanthanide-organic frameworks constructed from naphthalenedisulfonates: structure, luminescence and luminescence sensing properties. CrystEngComm. 2016, 18, 5890–5900.  doi: 10.1039/C6CE01028H

    26. [26]

      Cao, A. P.; Zhu, W.; Shang, J.; Klootwijk, J. H.; Sudhölter, E. J. R.; Huskens, J.; de Smet, L. C. P. M. Metal-organic polyhedra-coated Si nanowires for the sensitive detection of trace explosives. Nano Lett. 2017, 17, 1-7.  doi: 10.1021/acs.nanolett.6b02360

    27. [27]

      Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72– and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041–6084.  doi: 10.1021/acs.cgd.7b01155

    28. [28]

      Hu, Y. L.; Ding, M. L.; Liu, X. Q.; Sun, L. B.; Jiang, H. L. Rational synthesis of an exceptionally stable Zn(Ⅱ) metal-organic framework for the highly selective and sensitive detection of picric acid. Chem. Commun. 2016, 52, 5734–5737.  doi: 10.1039/C6CC01597B

    29. [29]

      Liang, Y. T.; Yang, G. P.; Liu, B.; Yan, Y. T.; Xia, Z. P.; Wang, Y. Y. Four super water-stable lanthanide-organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Trans. 2015, 44, 13325–13330.  doi: 10.1039/C5DT01421B

    30. [30]

      Wang, G. Y.; Song, C.; Kong, D. M.; Ruan, W. J.; Chang, Z.; Li, Y. Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J. Mater. Chem. A 2014, 2, 2213–2220.  doi: 10.1039/C3TA14199C

    31. [31]

      Sheldrick, G. M. SHELXS-2014, Program for Crystal Structure Solution. University of Gottingen, Germany 2014.

    32. [32]

      Sheldrick, G. M. SHELXL-2014, Program for the Refinement of Crystal Structure. University of Gottingen, Germany 2014.

    33. [33]

      Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Gottingen, Gottingen Germany 1997.

    34. [34]

      Chen, D. M.; Zhang, N. N.; Liu, C. S.; Du, M. Dual-emitting dye@MOF composite as a self-calibrating sensor for 2, 4, 6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 24671–24677.  doi: 10.1021/acsami.7b07901

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    11. [11]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    12. [12]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    13. [13]

      Lin Guo Rui Xu Denys Makarov . Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics. Chinese Journal of Structural Chemistry, 2025, 44(2): 100428-100428. doi: 10.1016/j.cjsc.2024.100428

    14. [14]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    15. [15]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    16. [16]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    17. [17]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

Metrics
  • PDF Downloads(1)
  • Abstract views(277)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return