Citation: Min-Min LIU, Shao-Ming YING, Bao-Guo CHEN, Hong-Xu GUO, Xu-Guang HUANG. Ag@g-C3N4 Nanocomposite: an Efficient Catalyst Inducing the Reduction of 4-Nitrophenol[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1372-1378. doi: 10.14102/j.cnki.0254–5861.2011–3178 shu

Ag@g-C3N4 Nanocomposite: an Efficient Catalyst Inducing the Reduction of 4-Nitrophenol

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn
  • Received Date: 30 March 2021
    Accepted Date: 27 April 2021

    Fund Project: the Natural Science Foundation of Fujian Province 2019J01747the Natural Science Foundation of Fujian Province 2020J01803Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry FJKL_FBCM202104China NSF 41976150

Figures(6)

  • In this study, an efficient catalyst Ag@g-C3N4 nanocomposite was successfully synthesized through a simple green reaction, and the characterizations through XRD, FTIR, SEM, BET and XPS were also studied. The activities of Ag@g-C3N4 were investigated toward the reduction of 4-nitrophenol to their corresponding aminophenol compounds in the presence of excess NaBH4 as a reducing agent. The Ag@g-C3N4 nanocomposites exhibited high catalytic activities, in which a 92.2% 4-nitrophenol conversion in 10 min and the apparent rate constant Kapp = 264.27×10-3 min-1 were obtained. The as-prepared Ag@g-C3N4 nanocomposites showed great potential in catalytically inducing the reduction of 4-nitrophenol, which makes them economically and energy conservation attractive from industrial waste water treatment.
  • 加载中
    1. [1]

      Harika, V. K.; Sadhanala, V. K.; Perelshtein, I.; Gedanken, A. Sonication-assisted synthesis of bimetallic Hg/Pd alloy nanoparticles for catalytic reduction of nitrophenol and its derivatives. Ultrason. Sonochem. 2020, 60, 1−9.

    2. [2]

      Zhao, Y.; Wu, Z.; Wang, Y.; Yang, C.; Li, Y. Facile fabrication of polystyrene microsphere supported gold-palladium alloy nanoparticles with superior catalytic performance for the reduction of 4-nitrophenol in water. Eng. Asp. 2017, 529, 417−424.  doi: 10.1016/j.colsurfa.2017.06.026

    3. [3]

      Song, L.; Shu, L.; Wang, Y.; Zhang, X. F.; Wang, Z.; Feng, Y.; Yao, J. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Int. J. Biol. Macromol. 2020, 143, 922−927.  doi: 10.1016/j.ijbiomac.2019.09.152

    4. [4]

      Afzal, S.; Julkapli, N, M.; Mun, L. K. Response surface approach for visible light assisted photocatalytic degradation of ortho nitrophenol by magnetically separable TiO2/CS nanocomposite. Mat. Sci. in Semicon. Proc. 2019, 99, 34−43.  doi: 10.1016/j.mssp.2019.04.022

    5. [5]

      Wang, Z. M.; Zheng, M.; Xie, Y. B.; Li, M. M.; Zeng, M.; Cao, H. B.; Guo, L. Molecular dynamics simulation of ozonation of p-nitrophenol at room temperature with ReaxFF force field. Acta Phys. -Chim. Sin. 2017, 33, 1399−1410.  doi: 10.3866/PKU.WHXB201704132

    6. [6]

      Alula, M. T.; Lemmens, P.; Madiba, M.; Present, B. Synthesis of free-standing silver nanoparticles coated filter paper for recyclable catalytic reduction of 4-nitrophenol and organic dyes. Cellulose 2020, 27, 2279−2292.  doi: 10.1007/s10570-019-02945-5

    7. [7]

      Liu, J.; Yan, X.; Wang, L.; Kong, L.; Jian, P. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. Colloid Interface Sci. 2017, 497, 102−107.  doi: 10.1016/j.jcis.2017.02.065

    8. [8]

      Wang, X.; Song, J.; Lu, J.; Zhu, W.; Hu, G. Development of a Z-scheme Ag/Ag2WO4/g-C3N4 photocatalyst for RhB fast degradation assisted with H2O2. J. Mater. Sci-Mater. El. 2021, 8, 1−14.

    9. [9]

      Roselin, L. S.; Patel, N.; Khayyat, S. A. Codoped g-C3N4 nanosheet for degradation of organic pollutants from oily wastewater. Appl. Surf. Sci. 2019, 494, 952−958.  doi: 10.1016/j.apsusc.2019.07.077

    10. [10]

      Yu, C.; Wang, P.; Wang, X.; Chen, F.; Yu, H. Silver-melamine nanowire-assisted synthesis of net-like AgCl-Ag/g-C3N4 for highly efficient photocatalytic degradation ability. J. Alloy. Compd. 2019, 806, 263−271.  doi: 10.1016/j.jallcom.2019.07.236

    11. [11]

      Zhao, X.; Zhang, X.; Han, D.; Liu, L. Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light. Appl. Surf. Sci. 2020, 501, 144258.1−144258.9.

    12. [12]

      Wang, X.; Tan, F.; Wang, W.; Qiao, X.; Qiu, X.; Chen, J. Anchoring of silver nanoparticles on graphitic carbon nitride sheets for the synergistic catalytic reduction of 4-nitrophenol. Chemosphere 2017, 172, 147−154.  doi: 10.1016/j.chemosphere.2016.12.103

    13. [13]

      Liu, X.; Tang, R. Y.; Xia, X. M.; Qin, Y. Y. The study of visible-light photocatalytic degradation activity of Ag doped g-C3N4 obtained by heating process. Mater. Res. Express 2020, 7, 1−11.

    14. [14]

      Xue, J.; Ma, T.; Shen, Q.; Guan, R.; Jia, H.; Liu, X.; Xu, B. A novel synthesis method for Ag/g-C3N4 nanocomposite and mechanism of enhanced visible-light photocatalytic activity. J. Mater. Sci-Mater. El. 2019, 30, 15636−15645.  doi: 10.1007/s10854-019-01945-2

    15. [15]

      She, P.; Li, J.; Bao, H.; Xu, X.; Hong, Z. Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity. J. Photochem. Photobiol. A Chem. 2019, 384, 11028−11028.

    16. [16]

      Yang, Z.; Xu, X.; Liang, X.; Lei, C.; Cui, Y.; Wu, W.; Yang, Y.; Zhang, Z.; Lei, Z. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl. Catal. B: Environ. 2017, 205, 42−54.  doi: 10.1016/j.apcatb.2016.12.012

    17. [17]

      Min, C.; Shen, C.; Li, R.; Li, Y.; Qin, J.; Yang, X. In-situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors. Ceram. Int. 2016, 42, 5575−5581.  doi: 10.1016/j.ceramint.2015.12.042

    18. [18]

      Jin, J.; Liang, Q.; Ding, C. Y.; Li, Z. Y.; Xu, S. Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4 nanosheets with improved photocatalytic activity. J. Alloys. Compd. 2017, 691, 763−771.  doi: 10.1016/j.jallcom.2016.08.302

    19. [19]

      Chen, M.; Guo, C.; Hou, S.; Wu, L.; Lv, J.; Hu, C.; Zhang, Y.; Xu, J. In-situ fabrication of Ag/Pg-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation. J. Hazard. Mater. 2019, 366, 219−228.

    20. [20]

      Wei, F.; Li, J.; Dong, C.; Bi, Y.; Han, X. Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal. Chemosphere 2020, 242, 1−11.

    21. [21]

      Liang, C.; Guo, H.; Zhang, L.; Ruan, M.; Niu, C. G.; Feng, H. P.; Wen, X. J.; Tang, N.; Liu, H. Y.; Zeng, G. M. Boosting molecular oxygen activation ability in self-assembled plasmonic p-n semiconductor photocatalytic heterojunction of WO3/Ag@Ag2O. Chem. Eng. J. 2019, 372, 12−25.

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    9. [9]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    10. [10]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    19. [19]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    20. [20]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

Metrics
  • PDF Downloads(3)
  • Abstract views(519)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return