Citation: Bao-Guo CHEN, Qiu-Yang YING, Jin-Ni SHEN. Hotspots of Photocatalytic Materials in 2020 Based on Big Data[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1317-1327. doi: 10.14102/j.cnki.0254–5861.2011–3171 shu

Hotspots of Photocatalytic Materials in 2020 Based on Big Data

  • Corresponding author: Qiu-Yang YING, fzuyqy@163.com
  • Received Date: 9 March 2021
    Accepted Date: 10 May 2021

    Fund Project: the Open Foundation of the State Key Laboratory of Structural Chemistry 20190027Youth Program of National Natural Science Foundation of China 51702053

Figures(8)

  • Based on CiteSpace software, big data bibliometrics analysis was carried out on the keywords of papers of photocatalytic materials published in 2020. Tracking the hotspots and directions can help young scholars to understand the latest progress. In the Web of Sciences, 4147 related papers were searched with "photocatalytic materials" as the main topic. Cluster analysis showed that the hotspots were g-C3N4, Mxene and metal-organic frameworks (MOF) and titanium dioxide (TiO2).
  • 加载中
    1. [1]

      Zhang, X. D.; Wang, Y. X.; Hou, F. L.; Li, H. X.; Yang, Y.; Zhang, X. X.; Yang, Y. D.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 2017, 391, 476‒483.  doi: 10.1016/j.apsusc.2016.06.109

    2. [2]

      Deng, Y. C.; Tang, L.; Zeng, G. M.; Feng, C. Y.; Dong, H. R.; Wang, J. J.; Feng, H. P.; Liu, Y. N.; Zhou, Y. Y.; Pang, Y. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ. Sci. : Nano. 2017, 4, 1494‒1511.  doi: 10.1039/C7EN00237H

    3. [3]

      Yuan, X. Z.; Jiang, L. B.; Chen, X. H.; Leng, L. J.; Wang, H.; Wu, Z. B.; Xiong, T.; Liang, J.; Zeng, G. M. Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation. Environ. Sci. : Nano. 2017, 4, 2175‒2185.  doi: 10.1039/C7EN00713B

    4. [4]

      Lu, Z. Y.; Yu, Z. H.; Dong, J. B.; Song, M. S.; Liu, Y.; Liu, X. L.; Ma, Z. F.; Su, H.; Yan, Y. S.; Huo, P. W. Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline. Chem. Eng. J. 2018, 337, 228‒241.  doi: 10.1016/j.cej.2017.12.115

    5. [5]

      Yang, Y.; Zhang, C.; Huang, D. L.; Zeng, G. M.; Huang, J. H.; Lai, C.; Zhou, C. Y.; Wang, W. J.; Guo, H.; Xue, W. J.; Deng, R.; Cheng, M.; Xiong, W. P. Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal., B 2019, 245, 87‒99.  doi: 10.1016/j.apcatb.2018.12.049

    6. [6]

      Zhou, X. R.; Zeng, Z. T.; Zeng, G. M.; Lai, C.; Xiao, R.; Liu, S. Y.; Huang, D. L.; Qin, L.; Liu, X. G.; Li, B. S.; Yi, H.; Fu, Y. K.; Li, L.; Wang, Z. H. Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media. Chem. Eng. J. 2020, 383, 123091.  doi: 10.1016/j.cej.2019.123091

    7. [7]

      Chen, S.; Huang, D. L.; Zeng, G. M.; Xue, W. J.; Lei, L.; Xu, P.; Deng, R; Li, J.; Cheng, M. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer. Chem. Eng. J. 2020, 382, 122840.  doi: 10.1016/j.cej.2019.122840

    8. [8]

      Liang, C.; Wu, Z. H.; Li, P. W.; Fan, J. J.; Zhang, Y. Q.; Shao, G. S. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl. Surf. Sci. 2017, 391, 337‒344.  doi: 10.1016/j.apsusc.2016.06.171

    9. [9]

      Gao, H. Q.; Zhang, P.; Hu, J. H.; Pan, J. M.; Fan, J. J.; Shao, G. S. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation. Appl. Surf. Sci. 2017, 391, 211‒217.  doi: 10.1016/j.apsusc.2016.06.170

    10. [10]

      Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230‒3238.  doi: 10.1039/C6TA08310B

    11. [11]

      Zhu, B. C.; Xia, P. F.; Li, Y.; Ho, W. K.; Yu, J. G. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017, 391, 175‒183.  doi: 10.1016/j.apsusc.2016.07.104

    12. [12]

      Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.  doi: 10.1002/adfm.201800136

    13. [13]

      Zhao, J. T.; Zhang, P.; Fan, J. J.; Hu, J.; Shao, G. S. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 2018, 430, 466‒474.  doi: 10.1016/j.apsusc.2017.06.308

    14. [14]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal., B 2019, 243, 556‒565.  doi: 10.1016/j.apcatb.2018.11.011

    15. [15]

      Kuang, P. Y.; Sayed, M.; Fan, J. J.; Cheng, B.; Yu, J. G. 3D Graphene-based H2-production photocatalyst and electrocatalyst. Adv. Ener. Mater. 2020, 10, 1903802.  doi: 10.1002/aenm.201903802

    16. [16]

      Di, J.; Xia, J. X.; Li, H. M.; Guo, S. J.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy. 2017, 41, 172‒192.  doi: 10.1016/j.nanoen.2017.09.008

    17. [17]

      Di, J.; Xia, J. X.; Li, H. M.; Liu, Z. Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: opportunities and challenges. Nano Energy. 2017, 35, 79‒91.  doi: 10.1016/j.nanoen.2017.03.030

    18. [18]

      Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.  doi: 10.1002/adfm.201801983

    19. [19]

      Yi, J. J.; She, X. J.; Song, Y. H.; Mao, M.; Xia, K. X.; Xu, Y. G.; Mo, Z.; Wu, J. J.; Xu, H.; Li, H. M. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem. Eng. J. 2018, 335, 282‒289.  doi: 10.1016/j.cej.2017.10.125

    20. [20]

      Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Lian, J. B.; Zhu, X. W.; Yan, P. C.; Lei, Y. C.; Yuan, S. Q.; Li, H. M. Construction of MnO2/monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl. Catal., B 2019, 241, 452‒460.  doi: 10.1016/j.apcatb.2018.08.073

    21. [21]

      Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X.; Xiong, J.; Yang, S. Z.; Li, H. M.; Liu, Z.; Dai, S. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.  doi: 10.1002/adma.201807576

    22. [22]

      Yi, J. J.; El-Alami, W.; Song, Y. H.; Li, H. M.; Ajayan, P. M.; Xu, H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 2020, 382, 122812.  doi: 10.1016/j.cej.2019.122812

    23. [23]

      Yin, S.; Chen, R.; Ji, M. X.; Jiang, Q.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J. Colloid Interface Sci. 2020, 560, 475‒484.  doi: 10.1016/j.jcis.2019.10.081

    24. [24]

      La Porta, F. A.; Nogueira, A. E.; Gracia, L.; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andres, J.; Longo, E. An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles. J. Phys. Chem. Solids 2017, 103, 179‒189.  doi: 10.1016/j.jpcs.2016.12.025

    25. [25]

      Pereira, P. F. S.; Gouveia, A. F.; Assis, M.; De Oliveira, R. C.; Pinatti, I. M.; Penha, M.; Goncalves, R. F.; Gracia, L.; Andres, J.; Longo, E. ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys. Chem. Chem. Phys. 2018, 20, 1923‒1937.  doi: 10.1039/C7CP07354B

    26. [26]

      Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Assis, M.; Da Trindade, L. G.; Santos, C.; Perrin, A.; Perrin, C.; Oliva, M.; Andres, J.; Longo, E. Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4: Mo complemented by DFT calculations. Appl. Catal., B 2018, 238, 198‒211.  doi: 10.1016/j.apcatb.2018.07.019

    27. [27]

      Pinatti, I. M.; Pereira, P. F. S.; De Assis, M.; Longo, E.; Rosa, I. L. V. Rare earth doped silver tungstate for photoluminescent applications. J. Alloys Compd. 2019, 771, 433‒447.  doi: 10.1016/j.jallcom.2018.08.302

    28. [28]

      Neto, N. F. A.; Nunes, T. B. O.; Li, M.; Longo, E.; Bomio, M. R. D.; Motta, F. V. Influence of microwave-assisted hydrothermal treatment time on the crystallinity, morphology and optical properties of ZnWO4 nanoparticles: photocatalytic activity. Ceram. Int. 2020, 46, 1766‒1774.  doi: 10.1016/j.ceramint.2019.09.151

    29. [29]

      Da Silva, J. S.; Machado, T. R.; Trench, A. B.; Silva, A. D.; Teodoro, V.; Vieira, P.; Martins, T. A.; Longo, E. Enhanced photocatalytic and antifungal activity of hydroxyapatite/α-AgVO3 composites. Mater. Chem. Phys. 2020, 123294.

    30. [30]

      Chantelle, L.; De Oliveira, A. L. M.; Kennedy, B. J.; Maul, J.; Da Silva, M. R. S.; Duarte, T. M.; Albuquerque, A. R.; Sambrano, J. R.; Landers, R.; Siu-Li, M.; Longo, E.; Dos Santos, I. M. G. Probing the site-selective doping in SrSnO3: Eu oxides and its impact on the crystal and electronic structures using synchrotron radiation and DFT simulations. Inorg. Chem. 2020, 59, 7666‒7680.  doi: 10.1021/acs.inorgchem.0c00664

    31. [31]

      Che, H.; Che, G.; Zhou, P.; Liu, C.; Dong, H.; Li, C.; Song, N.; Li, C. Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region. Chem. Eng. J. 2020, 382.

    32. [32]

      Dong, H.; Xiao, M.; Yu, S.; Wu, H.; Wang, Y.; Sung, J.; Chen, G.; Li, C. Insight into the activity and stability of RhxP nano-species (supported on g-C3N4 for photocatalytic H2 production. ACS Catal. 2020, 10, 458‒462.  doi: 10.1021/acscatal.9b04671

    33. [33]

      Song, B.; Wang, Q.; Wang, L.; Lin, J.; Wei, X.; Murugadoss, V.; Wu, S.; Guo, Z.; Ding, T.; Wei, S. Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants. J. Colloid Interface Sci. 2020, 559, 124‒133.  doi: 10.1016/j.jcis.2019.10.015

    34. [34]

      Ou, B.; Wang, J.; Wu, Y.; Zhao, S.; Wang, Z. Efficient removal of Cr(VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2020, 380.

    35. [35]

      Jin, Z.; Zhang, L. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. J. Mater. Sci. Technol. 2020, 49, 144‒156.  doi: 10.1016/j.jmst.2020.02.025

    36. [36]

      Wang, L.; Hong, Y.; Liu, E.; Wang, Z.; Chen, J.; Yang, S.; Wang, J.; Lin, X.; Shi, J. Rapid polymerization synthesizing high-crystalline g-C3N4 towards boosting solar photocatalytic H2 generation. Inter. J. Hydrogen. Energy 2020, 45, 6425‒6436.  doi: 10.1016/j.ijhydene.2019.12.168

    37. [37]

      Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P. M.; Xu, H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 2020, 382.

    38. [38]

      Hao, Q.; Jia, G.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18‒37.  doi: 10.1007/s12274-019-2589-z

    39. [39]

      Liu, X.; Chen, C. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett. 2020, 261, 127127.  doi: 10.1016/j.matlet.2019.127127

    40. [40]

      Hu, M.; Cheng, R.; Li, Z.; Hu, T.; Zhang, H.; Shi, C.; Yang, J.; Cui, C.; Zhang, C.; Wang, H.; Fan, B.; Wang, X.; Yang, Q. Interlayer engineering of Ti3C2Tx MXenes towards high capacitance supercapacitors. Nanoscale 2020, 12, 763‒771.  doi: 10.1039/C9NR08960H

    41. [41]

      Nguyen, V.; Nguyen, B.; Hu, C.; Nguyen, C. C.; Le, T. N. D.; Dinh, M.; Vo, D. N.; Trinh, Q. T.; Shokouhimehr, M.; Hasani, A.; Kim, S. Y.; Van, L. Q. Novel architecture titanium carbide (Ti3C2TX) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review. Nanomaterials 2020, 10, 602.  doi: 10.3390/nano10040602

    42. [42]

      Zhang, H.; Li, M.; Zhu, C.; Tang, Q.; Kang, P.; Cao, J. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Inter. 2020, 46, 81‒88.  doi: 10.1016/j.ceramint.2019.08.236

    43. [43]

      Cheng, L.; Chen, Q.; Li, J.; Liu, H. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Appl. Catal., B 2020, 267.

    44. [44]

      Cao, Y.; Fang, Y.; Lei, X.; Tan, B.; Hu, X.; Liu, B.; Chen, Q. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387.

    45. [45]

      Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; Zhao, Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew. Chemi. Inter. Edition. 2020, 59, 11287‒11292.  doi: 10.1002/anie.202002136

    46. [46]

      Li, J. M.; Zhao, L.; Wang, S.; Li, J.; Wang, G.; Wang, J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 515, 145922.  doi: 10.1016/j.apsusc.2020.145922

    47. [47]

      Wang, W.; Feng, H.; Liu, J.; Zhang, M.; Liu, S.; Feng, C.; Chen, S. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem. Eng. J. 2020, 386, 124116.  doi: 10.1016/j.cej.2020.124116

    48. [48]

      Chen, J.; Huang, Q.; Huang, H.; Mao, L.; Liu, M.; Zhang, X.; Wei, Y. Recent progress and advances in the environmental applications of MXene related materials. Nanoscale 2020, 12, 3574‒3592.  doi: 10.1039/C9NR08542D

    49. [49]

      Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 2020, 5, 235‒258.  doi: 10.1039/C9NH00571D

    50. [50]

      Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468‒8535.  doi: 10.1021/acs.chemrev.9b00685

    51. [51]

      Jiang, Z. W.; Zou, Y. C.; Zhao, T. T.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal-node-dependent photocatalytic performance. Angew. Chem. Inter. Edition. 2020, 59, 3300‒3306.  doi: 10.1002/anie.201913748

    52. [52]

      Huang, H.; Wang, X.; Philo, D.; Ichihara, F.; Song, H.; Li, Y.; Li, D.; Qiu, T.; Wang, S.; Ye, J. Toward visible-light-assisted photocatalytic nitrogen fixation: a titanium metal organic framework with functionalized ligands. Appl. Catal., B 2020, 267, 118686.  doi: 10.1016/j.apcatb.2020.118686

    53. [53]

      Zhu, Y. P.; Yin, J.; Abou-Hamad, E.; Liu, X.; Chen, W.; Yao, T.; Mohammed, O. F.; Alshareef, H. N. Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 2020, 32, 1906363.

    54. [54]

      Li, Y. H.; Tong, Y. X.; Peng, F. Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J. Energy Chem. 2020, 43, 8‒15.  doi: 10.1016/j.jechem.2019.07.014

    55. [55]

      Lv, S.; Liu, J.; Li, C.; Zhao, N.; Wang, Z.; Wang, S. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere 2020, 243.

    56. [56]

      Wang, Q.; Gao, Q.; Al-Enizi, A.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300‒339.  doi: 10.1039/C9QI01120J

    57. [57]

      Yan, Y.; Li, C.; Wu, Y.; Gao, J.; Zhang, Q. From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. J. Mater. Chem. 2020, 8, 15245‒15270.  doi: 10.1039/D0TA03749D

    58. [58]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9‒20.

    59. [59]

      Basavarajappa, P. S.; Patil, S. B.; Ganganagappa, N.; Reddy, K. R.; Raghu, A. V.; Reddy, C. V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764‒7778.  doi: 10.1016/j.ijhydene.2019.07.241

    60. [60]

      Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384.

    61. [61]

      Wang, Y.; Rao, L.; Wang, P.; Shi, Z.; Zhang, L. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl. Catal., B 2020, 262.

    62. [62]

      Chen, J.; Zhang, X.; Bi, F.; Zhang, X.; Yang, Y.; Wang, Y. A facile synthesis for uniform tablet-like TiO2/C derived from materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interface Sci. 2020, 571, 275‒284.  doi: 10.1016/j.jcis.2020.03.055

    63. [63]

      Wang, C.; Zhao, Y.; Xu, H.; Li, Y.; Wei, Y.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal., B 2020, 263.

    64. [64]

      Hu, X.; Hu, X.; Peng, Q.; Zhou, L.; Tan, X.; Jiang, L.; Tang, C.; Wang, H.; Liu, S.; Wang, Y.; Ning, Z. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem. Eng. J. 2020, 380.

  • 加载中
    1. [1]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    2. [2]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    3. [3]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    4. [4]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    5. [5]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    8. [8]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    9. [9]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    15. [15]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    16. [16]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    17. [17]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    18. [18]

      Fukui ShenYuqing ZhangGuoqing LuanKaixue ZhangZhenzhen WangYunhao LuoYuanyuan HouGang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646

    19. [19]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    20. [20]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

Metrics
  • PDF Downloads(4)
  • Abstract views(324)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return