Citation: Chao-Sheng XU, Pei-Wen LV. Photo-assisted Deposited Titanium Dioxide Film and the Enhancement of Its Photocatalytic Water Splitting Activity[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1223-1230. doi: 10.14102/j.cnki.0254–5861.2011–3144 shu

Photo-assisted Deposited Titanium Dioxide Film and the Enhancement of Its Photocatalytic Water Splitting Activity

  • Corresponding author: Pei-Wen LV, pwlv@fjirsm.ac.cn
  • Received Date: 17 February 2021
    Accepted Date: 16 March 2021

    Fund Project: the National Natural Science Foundation of China 61306075

Figures(14)

  • Photo-assisted deposited method is often employed in the metal-organic chemical vapor deposition whose ion source is organic compounds. It has been proved to increase the deposition rate and improve the crystallinity of the films. We demonstrate a photo-assisted sputtering deposited method which is used to prepare high quality TiO2 films. The crystallinity of the films is improved by the photo assistance without changing the morphology. And the structural and optical properties remain the same. The photo-assisted deposited TiO2 film shows a H2 evolution rate of 1.62 μmol·cm-2·h-1 that is about twice more than that of the pristine TiO2 film. It is found the Mott-Schottky effect responds for the photocatalytic activity. Photo-assisted deposited films show an enhanced photocatalytic activity due to the reduction of interface recombination and the high efficiency in the transferring of photo-generated carriers.
  • 加载中
    1. [1]

      Seol, J. S.; Lee, S. Y.; Lee, J. C.; Nam, H. D.; Kim, K. H. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 2003, 75, 155–162.  doi: 10.1016/S0927-0248(02)00127-7

    2. [2]

      Chang, J. F.; Kuo, H. H.; Leu, I. C.; Hon, M. H. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor sens. Actuator B-Chem. 2002, 84, 258–264.  doi: 10.1016/S0925-4005(02)00034-5

    3. [3]

      Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Nunes, G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 2003, 82, 117–1119.

    4. [4]

      Ling, B.; Sun, X. W.; Zhao, J. L.; Tan, S. T.; Dong, Z. L.; Yang, Y.; Yu, H. Y.; Qi, K. C. Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode. Physica E 2009, 41, 635–639.  doi: 10.1016/j.physe.2008.10.017

    5. [5]

      Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Goncalves, A. M. F.; Marques, A. J. S.; Pereira, L. M. N.; Martins, R. F. P. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 90–594.

    6. [6]

      Okimura, K. Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering. Surf. Coat. Technol. 2001, 135, 86–290.

    7. [7]

      Yue, L.; Zhou, M. L.; Chen, Q.; Weng, J.; Zhang, Y. F. Ag/PEO nanocomposite fabricated in a planar magnetron sputtering. Vacuum 2009, 83, 1200–1203.  doi: 10.1016/j.vacuum.2008.10.006

    8. [8]

      Yang, I. H.; Lee, Y.; Jang, J. N.; Hong, M. Study of the inductively coupled plasma assisted DC magnetron sputtering (ICPDMS) during ITO deposition. Thin Solid Films 2009, 517, 4165–4169.  doi: 10.1016/j.tsf.2009.02.032

    9. [9]

      Asmussen, J.; Grotjohn, T. A.; Mak, P.; Perrin, M. A. The design and application of electron cyclotron resonance discharges. Ieee T. Plasma Sci. 1997, 25, 1196–1221.  doi: 10.1109/27.650896

    10. [10]

      Ehiasarian, A. P.; Wen, J. G.; Petrov, I. Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 2007, 101, 054301.  doi: 10.1063/1.2697052

    11. [11]

      Marinangeli, R. E.; Ollis, D. F. Photo-assisted heterogeneous catalysis with optical fibers II. Nonisothermal single fiber and fiber bundle. AICHE J. 1980, 26, 1000–1008.  doi: 10.1002/aic.690260615

    12. [12]

      Fujita, Y. The reaction mechanisms for precursors in photo-assisted metalorganic-vapor-phase epitaxy growth of ZnSe. J. Cryst. Growth 2000, 221, 382–387.  doi: 10.1016/S0022-0248(00)00718-1

    13. [13]

      Choy, K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170.  doi: 10.1016/S0079-6425(01)00009-3

    14. [14]

      Fujita, S.; Tanabe, A.; Sakamoto, T.; Isemura, M.; Fujita, S. Growth-rate enhancement by senon lamp irradiation in organometallic vapor-phase epitaxy of znse. Jpn. J. Appl. Phys. 1987, 26, L2000–L2002.  doi: 10.1143/JJAP.26.L2000

    15. [15]

      Li, X.; Zhang, B.; Zhu, H.; Dong, X.; Xia, X.; Cui, Y.; Huang, K.; Du, G. Properties of ZnO thin films grown on Si substrates by photo-assisted MOCVD. Appl. Surf. Sci. 2008, 254, 2081–2084.  doi: 10.1016/j.apsusc.2007.08.056

    16. [16]

      Lv, P.; Chen, S.; Huang, F. Controllable phase transformation of titanium dioxide for the high performance polymer solar cells. Sol. Energy Mater. Sol. Cells 2019, 192, 88–93.  doi: 10.1016/j.solmat.2018.11.010

    17. [17]

      Born, M.; Wolf, E.; Hecht, E. Principles of optics: electromagnetic theory of propagation interference and diffraction of light. Phys. Today 2000, 53, 77–78.

    18. [18]

      Nowak, M. Determination of optical-constants and average thickness of inhomogeneous-rough thin-films using spectral dependence of optical transmittance. Thin Solid Films 1995, 254, 200–210.  doi: 10.1016/0040-6090(94)06268-P

    19. [19]

      Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.  doi: 10.1126/science.1200448

    20. [20]

      Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.  doi: 10.1021/ja3012676

    21. [21]

      Wu, Q. P. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 2016, 24, 63–71.  doi: 10.1016/j.nanoen.2016.04.004

    22. [22]

      Katoh, R.; Murai, M.; Furube, A. Transient absorption spectra of nanocrystalline TiO2 films at high excitation density. Chem. Phys. Lett. 2010, 500, 309–312.  doi: 10.1016/j.cplett.2010.10.045

    23. [23]

      Yamakata, A.; Ishibashi, T.; Onishi, H. Time-resolved infrared absorption spectroscopy of photogenerated electrons in platinized TiO2 particles. Chem. Phys. Lett. 2001, 333, 271–277.  doi: 10.1016/S0009-2614(00)01374-9

    24. [24]

      Lee, J.; Li, Z.; Zhu, L. Z.; Xie, S. H.; Cui, X. L. Ti3+ self-doped TiO2 via facile catalytic reduction over Al (acac) 3 with enhanced photoelectrochemical and photocatalytic activities. Appl. Cataly. B-Environ. 2018, 224, 715–724.

    25. [25]

      Shaner, M. R.; Fountaine, K. T.; Ardo, S.; Coridan, R. H.; Atwater, H. A.; Lewis, N. S. Photoelectrochemistry of core-shell tandem junction n–p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 2014, 7, 779–790.

    26. [26]

      Gelderman, K.; Lee, L.; Donne, S. W. Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 2007, 84, 685–688.

  • 加载中
    1. [1]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    6. [6]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    16. [16]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    17. [17]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    18. [18]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    19. [19]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    20. [20]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

Metrics
  • PDF Downloads(1)
  • Abstract views(284)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return