Citation: Yang JIAO, Jia-Ding ZHANG, Shu-Zhang WANG, Hui YAO, Ming-Guo LIU, Nian-Yu HUANG. Synthesis and Absolute Configuration of ((2R, 3R, 6S)-3-Hydroxy-6-(naphthalen-2-ylthio)-3, 6-dihydro-2H-pyran-2-yl)methyl Pivalate[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1238-1245. doi: 10.14102/j.cnki.0254–5861.2011–3124 shu

Synthesis and Absolute Configuration of ((2R, 3R, 6S)-3-Hydroxy-6-(naphthalen-2-ylthio)-3, 6-dihydro-2H-pyran-2-yl)methyl Pivalate

  • Corresponding author: Ming-Guo LIU, mgliu1966@163.com Nian-Yu HUANG, huangny@ctgu.edu.cn
  • Received Date: 28 January 2021
    Accepted Date: 13 April 2021

    Fund Project: the National Natural Science Foundation of China 82003621Natural Science Foundation of Hubei Province 2020CFB205Educational Commission of Hubei Province Q20201204

Figures(3)

  • A stereo-selective palladium-catalyzed one-pot Tsuji-Trost reaction was used to prepare four β-thiogalactosides from unsaturated D-galactal and thiol. Their structures were characterized by nuclear magnetic resonance spectra and high-resolution electrospray ionization mass spectra. The absolute configuration was confirmed with a Flack parameter of 0.019(15) by X-ray crystallography using a Cu radiation source. Compound 6a (C21H24O4S): orthorhombic system, space group P212121, a = 9.0919(4), b = 9.6313(4), c = 22.5936(11) Å, V = 1978.45(15) Å3, Z = 4, F(000) = 792, Dc = 1.250 g/cm3, μ = 1.636 mm−1, R = 0.0478 and wR = 0.1384 for 3621 independent reflections (Rint = 0.0390) and 3326 observed ones (I > 2σ(I)). 3-(4, 5)-Dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) cell viability assays indicated that these thiogalactosides showed anti-proliferative activities against human gastric cancer HGC-27 cells with IC50 values of 69~88 μM.
  • 加载中
    1. [1]

      Damaraju, V. L.; Damaraju, S.; Young, J. D.; Baldwin, S. A.; Mackey, J.; Sawyer, M. B.; Cass, C. E. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003, 22, 7524–7536.  doi: 10.1038/sj.onc.1206952

    2. [2]

      Seley-Radtke, K. L.; Yates, M. K. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res. 2018, 154, 66–86.  doi: 10.1016/j.antiviral.2018.04.004

    3. [3]

      Osada, H. Discovery and applications of nucleoside antibiotics beyond polyoxin. J. Antibiot. 2019, 72, 855–864.  doi: 10.1038/s41429-019-0237-1

    4. [4]

      Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216.  doi: 10.2174/1568026615666150915111741

    5. [5]

      Wright, A. J. The penicillins. Mayo Clin. Proc. 1999, 74, 290–307.  doi: 10.4065/74.3.290

    6. [6]

      Vicente, D.; Pérez-Trallero, E. Tetracyclines, sulfonamides, and metronidazole. Enferm. Infecc. Microbiol. Clin. 2010, 28, 122–130.  doi: 10.1016/j.eimc.2009.10.002

    7. [7]

      Pan, C.; Kuranaga, T.; Kakeya, H. Total synthesis of thioamycolamide A via a biomimetic route. Org. Biomol. Chem. 2020, 18, 8366–8370.  doi: 10.1039/D0OB01942A

    8. [8]

      Kobayashi, E.; Motoki, K.; Uchida, T.; Fukushima, H.; Koezuka, Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 1995, 7, 529–534.

    9. [9]

      Zhang, L.; Carthy, C. M.; Zhu, X. Synthesis of a glucosylated alpha-S-galactosylceramide as potential immunostimulant. Carbohydr. Res. 2017, 448, 43–47.  doi: 10.1016/j.carres.2017.05.022

    10. [10]

      Lian, G.; Zhang, X.; Yu, B. Thioglycosides in carbohydrate research. Carbohydr. Res. 2015, 403, 13–22.  doi: 10.1016/j.carres.2014.06.009

    11. [11]

      Codée, J. D.; Litjens, R. E.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769–782.  doi: 10.1039/b417138c

    12. [12]

      Zhu, F.; Miller, E.; Zhang, S. Q.; Yi, D.; O'Neill, S.; Hong, X.; Walczak, M. A. Stereoretentive C(sp3)-S cross-coupling. J. Am. Chem. Soc. 2018, 140, 18140–18150.  doi: 10.1021/jacs.8b11211

    13. [13]

      Zhu, M.; Alami, M.; Messaoudi, S. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. Chem. Commun. 2020, 56, 4464–4467.  doi: 10.1039/D0CC01126F

    14. [14]

      Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Oliverio, M.; Russo, B. A facile Er(OTf)3-catalyzed synthesis of 2, 3-unsaturated O- and S-glycosides. Carbohydr. Res. 2007, 342, 2125–2131.  doi: 10.1016/j.carres.2007.05.034

    15. [15]

      Stevanović, D.; Pejović, A.; Damljanović, I.; Minić, A.; Bogdanović, G. A.; Vukićević, M.; Radulović, N. S.; Vukićević, R. D. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst. Carbohydr. Res. 2015, 407, 111–121.  doi: 10.1016/j.carres.2015.02.001

    16. [16]

      Meng, S.; Zhong, W.; Yao, W.; Li, Z. Stereoselective phenylselenoglycosylation of glycals bearing a fused carbonate moiety toward the synthesis of 2-deoxy-β-galactosides and β-mannosides. Org. Lett. 2020, 22, 2981–2986.  doi: 10.1021/acs.orglett.0c00732

    17. [17]

      Lai, M. N.; Abdulmajed Othman, K.; Yao, H.; Wang, Q. Y.; Feng, Y. K.; Huang, N. Y.; Liu, M. G.; Zou, K. Open-air stereoselective construction of C-aryl glycosides. Org. Lett. 2020, 22, 1144–1148.  doi: 10.1021/acs.orglett.9b04665

    18. [18]

      Sheldrick, G. M. SHELXL 97, Program for Crystal Structure Determinations. University of Göttingen, Germany 1997.

    19. [19]

      Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    20. [20]

      Pascua-Maestro, R.; Corraliza-Gomez, M.; Diez-Hermano, S.; Perez-Segurado, C.; Ganfornina, M. D.; Sanchez, D. The MTT-formazan assay: complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochem. 2018, 120, 179–186.  doi: 10.1016/j.acthis.2018.01.006

    21. [21]

      Rose, J. D.; Parker, W. B.; Someya, H.; Shaddix, S. C.; Montgomery, J. A.; Secrist, J. A. Enhancement of nucleoside cytotoxicity through nucleotide prodrugs. J. Med. Chem. 2002, 45, 4505–4512.  doi: 10.1021/jm020107s

    22. [22]

      MacMillan, J. B.; Guang, X. Z.; Skepper, C. K.; Molinski, T. F. Phorbasides A−E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations. J. Org. Chem. 2008, 73, 3699–3706.  doi: 10.1021/jo702307t

    23. [23]

      Ogunsina, M.; Samadder, P.; Idowu, T.; Arthur, G.; Schweizer, F. Replacing D-glucosamine with its l-enantiomer in glycosylated antitumor ether lipids (GAELs) retains cytotoxic effects against epithelial cancer cells and cancer stem cells. J. Med. Chem. 2017, 60, 2142–2147.  doi: 10.1021/acs.jmedchem.6b01773

    24. [24]

      Paolini, J. P. The bond order-bond length relationship. J. Comput. Chem. 1990, 11, 1160–1163.  doi: 10.1002/jcc.540111007

    25. [25]

      Cao, C. Q.; Yan, X. M.; Yang, Q. L.; Luo, H. J.; Huang, N. Y. Synthesis and crystal structure of (Z)-2-methyl-5, 6-dihydrobenzo[d]thiazol-7(4H)-one O-prop-2-yn-1-yl oxime derivatives. Chin. J. Struc. Chem. 2014, 33, 1683−1688.

    26. [26]

      Lu, X. F.; Yang, Z.; Huang, N. Y.; He, H. B.; Deng, W. Q.; Zou, K. Synthesis and cytotoxic activities of 2-substituted (25R)-spirostan-1, 4, 6-triene-3-ones via ring-opening/elimination and "click" strategy. Bioorg. Med. Chem. Lett. 2015, 25, 3726–3729.  doi: 10.1016/j.bmcl.2015.06.028

    27. [27]

      Yao, Y.; Xiong, C. P.; Zhong, Y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Intramolecular and Ferrier rearrangement strategy for the construction of C1-β-D-xylopyranosides: synthesis, mechanism and biological activity study. Adv. Syn. Cat. 2019, 361, 1012–1017.  doi: 10.1002/adsc.201801423

    28. [28]

      Wang, Y.; Yao, H.; Hua, M.; Jiao, Y.; He, H. B.; Liu, M. G.; Huang, N. Y.; Zou, K. Direct N-glycosylation of amides/amines with glycal donors. J. Org. Chem. 2020, 85, 7485–7493.  doi: 10.1021/acs.joc.0c00975

    29. [29]

      West, B. T. Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval. Health Prof. 2009, 32, 207−228.  doi: 10.1177/0163278709338554

  • 加载中
    1. [1]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    19. [19]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    20. [20]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

Metrics
  • PDF Downloads(2)
  • Abstract views(302)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return