Citation: Yong-Kui FENG, Hua-Lan SU, Billy Joel MUKULA OTUKOL, Joel Billy, Xue-Qing ZHANG, Hui YAO, Nian-Yu HUANG. Synthesis and Crystal Structure of tert-Butyl(((2R, 3R, 6R)-3-hydroxy-6-(nitromethyl)-3, 6-dihydro-2H-pyran-2-yl)methyl)carbonate[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1205-1212. doi: 10.14102/j.cnki.0254–5861.2011–3120 shu

Synthesis and Crystal Structure of tert-Butyl(((2R, 3R, 6R)-3-hydroxy-6-(nitromethyl)-3, 6-dihydro-2H-pyran-2-yl)methyl)carbonate

  • Corresponding author: Hui YAO, yaohui@ctgu.edu.cn Nian-Yu HUANG, huangny@ctgu.edu.cn
  • Received Date: 26 January 2021
    Accepted Date: 23 February 2021

    Fund Project: the National Natural Science Foundation of China 82003621

Figures(4)

  • In this paper, a β-C-pyranogalactoside (IX) was synthesized from D-galactose through a nine-step reaction with a total yield of 32% under the palladium catalyst, and its structure was characterized by nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The absolute configuration of this pyranogalactoside was confirmed with a Flack parameter of –0.01(6) by X-ray crystallography using a Cu radiation source. Compound (IX), C12H19NO7, crystal data: monoclinic system, space group P212121, a = 8.53480(10), b = 9.4207(2), c = 18.1308(3) Å, V = 1457.79(4) Å3, Z = 4, F(000) = 616, Dc = 1.318 g/cm3, μ = 0.931 mm−1, R = 0.0294 and wR = 0.0752 for 2875 independent reflections (Rint = 0.0163) and 2857 observed ones (I > 2σ(I)).
  • 加载中
    1. [1]

      Liao, H. Z.; Ma, J. M.; Yao, H.; Liu, X. W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 2018, 16, 1791−1806.  doi: 10.1039/C8OB00032H

    2. [2]

      Yang, Y.; Yu, B. Recent advances in the chemical synthesis of C-glycosides. Chem. Rev. 2017, 117, 12281−12356.  doi: 10.1021/acs.chemrev.7b00234

    3. [3]

      Wei, B.; Wang, Y. K.; Qiu, W. H.; Wang, S. J.; Wu, Y. H.; Xu, X. W.; Wang, H. Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C−C glycosidic bonds. Appl. Microbiol. Biotechnol. 2020, 104, 1883−1890.  doi: 10.1007/s00253-019-10333-z

    4. [4]

      Drohat, A. C.; Maiti, A. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Org. Biomol. Chem. 2014, 12, 8367−8378.  doi: 10.1039/C4OB01063A

    5. [5]

      Wolfenden, R.; Lu, X.; Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 1998, 120, 6814−6815.  doi: 10.1021/ja9813055

    6. [6]

      Yang, G.; Schmieg, J.; Tsuji, M.; Franck, R. W. The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew. Chem. Int. Ed. 2004, 43, 3818‒3822.  doi: 10.1002/anie.200454215

    7. [7]

      Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Total synthesis of aryl C-glycoside natural products: strategies and tactics. Chem. Rev. 2018, 118, 1495‒1598.  doi: 10.1021/acs.chemrev.7b00380

    8. [8]

      Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 2018, 61, 2079‒2086.  doi: 10.1007/s00125-018-4654-7

    9. [9]

      Dhillon, S. Dapagliflozin: a review in type 2 diabetes. Drugs 2019, 79, 1135‒1146.  doi: 10.1007/s40265-019-01148-3

    10. [10]

      Deeks, E. D.; Scheen, A. J. Canagliflozin: a review in type 2 diabetes. Drugs 2017, 77, 1577‒1592.  doi: 10.1007/s40265-017-0801-6

    11. [11]

      Levine, M. J. Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr. Diabetes Rev. 2017, 13, 405‒423.

    12. [12]

      Sakamoto, K.; Nagai, M.; Ebe, Y.; Yorimitsu, H.; Nishimura, T. Iridium-promoted deoxyglycoside synthesis: stereoselectivity and mechanistic insight. ACS Catal. 2019, 9, 1347–1352.  doi: 10.1021/acscatal.8b04686

    13. [13]

      Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-aryl glycosides. J. Am. Chem. Soc. 2016, 138, 12049–12052.  doi: 10.1021/jacs.6b07891

    14. [14]

      Wang, J.; Deng, C.; Zhang, Q.; Chai, Y. Tuning the chemoselectivity of silyl protected rhamnals by temperature and bronsted acidity: kinetically controlled 1, 2-addition vs thermodynamically controlled Ferrier rearrangement. Org. Lett. 2019, 21, 1103–1107.  doi: 10.1021/acs.orglett.9b00009

    15. [15]

      Mabit, T.; Siard, A.; Legros, F.; Guillarme, S.; Martel, A.; Lebreton, J.; Carreaux, F.; Dujardin, G.; Collet, S. Stereospecific C-glycosylation by Mizoroki-Heck reaction: a powerful and easy-to-set-up synthetic tool to access alpha- and beta-aryl-C-glycosides. Chem. Eur. J. 2018, 24, 14069–14074.  doi: 10.1002/chem.201803674

    16. [16]

      Leng, W. L.; Liao, H. Z.; Yao, H.; Ang, Z. E.; Xiang, S. H.; Liu, X. W. Palladium-catalyzed decarboxylative allylation/Wittig reaction: substrate-controlled synthesis of C-vinyl glycosides. Org. Lett. 2017, 19, 416–419.  doi: 10.1021/acs.orglett.6b03697

    17. [17]

      Li, W.; Yu, B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev. 2018, 47, 7954–7984.  doi: 10.1039/C8CS00209F

    18. [18]

      Ye, W.; Stevens, C. M.; Wen, P.; Simmons, C. J.; Tang, W. Mild Cu(OTf)2-mediated C-glycosylation with chelation-assisted picolinate as a leaving group. J. Org. Chem. 2020, 85, 16218–16225.  doi: 10.1021/acs.joc.0c01041

    19. [19]

      Zhu, F.; Rodriguez, J.; Yang, T.; Kevlishvili, I.; Miller, E.; Yi, D.; O'Neill, S.; Rourke, M. J.; Liu, P.; Walczak, M. A. Glycosyl cross-coupling of anomeric nucleophiles: scope, mechanism, and applications in the synthesis of aryl C-glycosides. J. Am. Chem. Soc. 2017, 139, 17908–17922.  doi: 10.1021/jacs.7b08707

    20. [20]

      Liu, S. X.; Tsai, Y. T.; Lin, Y. T.; Li, J. Y.; Chang, C. C. Design and synthesis of trivalent Tn glycoconjugate polymers by nitroxide-mediated polymerization. Tetrahedron 2019, 75, 1307–1311.

    21. [21]

      Moore, P. W.; Schuster, J. K.; Hewitt, R. J.; Stone, M. R. L.; Harvey, J. E. Divergent synthesis of 2-C-branched pyranosides and oxepines from 1, 2-gem-dibromocyclopropyl carbohydrates. Tetrahedron 2014, 70, 7032–7043.  doi: 10.1016/j.tet.2014.06.069

    22. [22]

      Dai, Y. W.; Zheng, J. F.; Zhang, Q. General strategy for stereoselective synthesis of β-N-glycosyl sulfonamides viapalladium-catalyzed glycosylation. Org. Lett. 2018, 20, 3923–3927.  doi: 10.1021/acs.orglett.8b01506

    23. [23]

      Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    24. [24]

      Ma, Y. Y.; Zhao, D. G.; Zhang, R.; He, X.; Li, B. Q.; Zhang, X. Z.; Wang, Z.; Zhang, K. Identification of bioactive compounds that contribute to the alpha-glucosidase inhibitory activity of rosemary. Food Funct. 2020, 11, 1692–1701.  doi: 10.1039/C9FO02448D

    25. [25]

      Dan, W. J.; Zhang, Q.; Zhang, F.; Wang, W. W.; Gao, J. M. Benzonate derivatives of acetophenone as potent alpha-glucosidase inhibitors: synthesis, structure-activity relationship and mechanism. J. Enzyme Inhib. Med. Chem. 2019, 34, 937–945.  doi: 10.1080/14756366.2019.1604519

    26. [26]

      Tong, T. T.; Zhao, E. H.; Gao, H. L.; Xu, Y. H.; Zhao, Y. J.; Fu, G.; Cui, H. J. Recent research advances of 1-deoxynojirimycin and its derivatives. China J. Chin. Mater. Med. 2018, 43, 1990–1997.

    27. [27]

      Paolini, J. P. The bond order-bond length relationship. J. Comput. Chem. 1990, 11, 1160–1163.  doi: 10.1002/jcc.540111007

    28. [28]

      Cai, W.; Jiang, L.; Xie, Y.; Liu, Y.; Liu, W.; Zhao, G. Design of SGLT2 inhibitors for the treatment of type 2 diabetes: a history driven by biology to chemistry. Med. Chem. 2015, 11, 317–328.  doi: 10.2174/1573406411666150105105529

    29. [29]

      Wang, Y.; Yao, H.; Hua, M.; Jiao, Y.; He, H.; Liu, M.; Huang, N.; Zou, K. Direct N-glycosylation of amides/amines with glycal donors. J. Org. Chem. 2020, 85, 7485–7493.  doi: 10.1021/acs.joc.0c00975

    30. [30]

      Yao, Y.; Xiong, C. P.; Zhong, Y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Intramolecular and Ferrier rearrangement strategy for the construction of C1-β-D-xylopyranosides: synthesis, mechanism and biological activity study. Adv. Syn. Cat. 2019, 361, 1012–1017.  doi: 10.1002/adsc.201801423

    31. [31]

      Li, D. W.; Zuo, H. H.; Hu, M.; Zhang, J. Y.; Chen, L.; Huang, N. Y. Synthesis and absolute configuration of (2S, 3S, 3aS, 6S, 7aR)-2, 3-dihydroxy-2-((R)-1-hydroxy-3-methylbutyl)-3, 6-dimethylhexahydrobenzofuran-4(2H)-one. Chin. J. Struct. Chem. 2017, 36, 1276–1282.

    32. [32]

      Huang, N. Y.; Wang, W. B.; Chen, L.; Luo, H. J.; Wang, J. Z.; Deng, W. Q.; Zou, K. Design, synthesis and biological evaluation of bisabolonalone oxime derivatives as potassium-competitive acid blockers (P-CABs). Bioorg. Med. Chem. Lett. 2016, 26, 2268–2272.  doi: 10.1016/j.bmcl.2016.03.051

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    19. [19]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    20. [20]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

Metrics
  • PDF Downloads(1)
  • Abstract views(370)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return