Citation: Deng-Peng LI, Zhi-Huang XU, Li-Wang YE, Teng-Fei CAO, Xin-Xin ZHUANG. Synthesis, Structure and Characterization of a New Complex: [Mn(C6H12N4)2(H2O)4][Mn(H2O)6][SO4]2·6H2O[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1169-1176. doi: 10.14102/j.cnki.0254–5861.2011–3119 shu

Synthesis, Structure and Characterization of a New Complex: [Mn(C6H12N4)2(H2O)4][Mn(H2O)6][SO4]2·6H2O

  • Corresponding author: Xin-Xin ZHUANG, zxx@fjirsm.ac.cn
  • Received Date: 25 January 2021
    Accepted Date: 15 March 2021

Figures(6)

  • A novel complex, [Mn(C6H12N4)2(H2O)4][Mn(H2O)6][SO4]2·6H2O, was synthesized and hexagonal single crystals with centimeter-scale sizes were obtained by the method of solvent evaporation. It was characterized by elemental analysis, infrared spectrum, thermogravimetric analysis and X-ray single-crystal diffraction. The complex belongs to triclinic crystal system, space group P\begin{document}$ \overline 1 $\end{document} with a = 9.3390(8), b = 13.3520(13), c = 16.3207(13) Å, α = 100.7160(3)°, β = 90.1020(10)°, γ = 109.9490(5)°, V = 1874.9(3) Å3, Z = 2, Dc = 1.542 g/cm3, Mr = 870.64, μ = 0.876 mm-1, T = 293(2) K, F(000) = 916 and S = 0.990. The crystal structure determination displayed a distorted octahedral geometry around the manganese atom, which is bound to two nitrogen atoms from hexamethylenetetramine, acting as monodentate ligands, and to four aqua ligands. Variable-temperature magnetic measurements of the complex indicate the presence of weak antiferromagnetic interaction between manganese centers.
  • 加载中
    1. [1]

      Cahiez, G. R.; Duplais, C.; Buendia, J. J. Chemistry of organomanganese(II) compounds. Chem. Rev. 2009, 109, 1434–1476.  doi: 10.1021/cr800341a

    2. [2]

      Yang, C.; Zhang, Z.; Lin, S. A review of manganese-based molecular magnets and supramolecular architectures from phenolic oximes. Coordin. Chem. Rev. 2015, 289–290 (apr. ), 289–314.

    3. [3]

      Bartyzel, A.; Cristóvão, B.; Łyszczek, R. Crystal structure and thermal studies of coordination compounds. Crystals 2020, 10, 1108.  doi: 10.3390/cryst10121108

    4. [4]

      Zorina-Tikhonova, E.; Matyukhina, A.; Skabitskiy, I.; Shmelev, M.; Korchagin, D.; Babeshkin, K.; Efimov, N.; Kiskin, M.; Eremenko, I. Cobalt(II) complexes based on benzylmalonate anions exhibiting field-induced single-ion magnet slow relaxation behavior. Crystals 2020, 10, 1130.  doi: 10.3390/cryst10121130

    5. [5]

      Duboc, C. Determination and prediction of the magnetic anisotropy of Mn ions. Chem. Soc. Rev. 2016, 47, 5834–5847.

    6. [6]

      Thompson, L. K.; Dawe, L. N. Magnetic properties of transition metal (Mn(II), Mn(III), Ni(II), Cu(II)) and lanthanide (Gd(III), Dy(III), Tb(III), Eu(III), Ho(III), Yb(III)) clusters and [nxn] grids: isotropic exchange and SMM behaviour. Coordin. Chem. Rev. 2016, 46, 13–31.

    7. [7]

      Nandy, M.; Shit, S.; Rosair, G.; Gómez-García, C. J. Synthesis, characterization and magnetic studies of a tetranuclear manganese(II/IV) compound incorporating an amino-alcohol derived Schiff base. Magnetochemistry 2018, 4, 57.  doi: 10.3390/magnetochemistry4040057

    8. [8]

      Nagashima, H.; Asada, M.; Mino, H. Magnetic structure of manganese cluster in photosystem II investigated by electron paramagnetic resonance. Biophy. Physicobio. 2018, 15, 45–50.  doi: 10.2142/biophysico.15.0_45

    9. [9]

      Reed, G. H.; Poyner, R. R. Mn2+ as a probe of divalent metal ion binding and function in enzymes and other proteins. Met. Ions Biol. Syst. 2000, 37, 183–207.

    10. [10]

      Amirov, R. R.; Burilova, E. A.; Zhuravleva, Y. I.; Zakharov, A. V.; Ziyatdinova, A. B. NMR paramagnetic probing of polymer solutions using manganese(II) ions. Polym. Sci. Ser. C+. 2017, 59, 133–140.

    11. [11]

      Miao, Q.; Liu, W.; Thomas, K.; Blok, A.; Timmer, M.; Overhand, M.; Ubbink, M. A double-armed, hydrophilic transition metal complex as a paramagnetic NMR probe. Angew. Chem. Int. Ed. 2019, 58, 13093–13100.  doi: 10.1002/anie.201906049

    12. [12]

      Xiao, Y.; Ramchandra, P.; Liu, J.; Cong, M.; Zhang, Z.; Zhou, S. MRI contrast agents: classification and application. Int. J. Mol. Med. 2016, 38, 1319–1326.  doi: 10.3892/ijmm.2016.2744

    13. [13]

      Li, J.; Wu, C.; Hou, P.; Zhang, M.; Xu, K. One-pot preparation of hydrophilic manganese oxide nanoparticles as T-1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens. Bioelectron. 2018, 102, 1–8.  doi: 10.1016/j.bios.2017.10.047

    14. [14]

      Barandov, A.; Bartelle, B. B.; Williamson, C. G.; Loucks, E. S.; Lippard, S. J.; Jasanoff, A. Sensing intracellular calcium ions using a manganese-based MRI contrast agent. Nat. Commun. 2019, 10, 897.  doi: 10.1038/s41467-019-08558-7

    15. [15]

      Rummeny, E. J.; Torres, C. G.; Kurdziel, J. C.; Nilsen, G.; Beeck B, O. D.; Lundby, B. MnDPDP for MR imaging of the liver: results of an independent image evaluation of the European phase III studies. Acta Radiol. 1997, 38, 638–642.

    16. [16]

      Zhao, F. H.; Jia, X. M.; He, Y. C.; Huang, L. W.; Yan, X. Q.; Li, Z. L.; Li, J. X.; Feng, R.; You, J. M. Syntheses and magnetic properties of three transition metal complexes based on 4΄-p-tolyl-2, 2΄: 6΄, 2΄΄-terpyridine and SCN-. Polyhedron 2019, 173, 114–124.

    17. [17]

      Kruszynski, R.; Sierański, T.; Świątkowski, M.; Zielak, M.; Wojciechowski, J.; Dzierżawska, M.; Lewiński, B. On the coordination behavior of the hmta toward zinc and cadmium cations in presence of sulfate(VI) and nitrate(V) anions. J. Coord. Chem. 2014, 67, 1332–1352.  doi: 10.1080/00958972.2014.915524

    18. [18]

      Gao, S. M.; Xu, Z. H.; Ye, L. W.; Su, G. B.; Zhuang, X. X. Synthesis, crystal structure and properties of a coordination compound: Ni(C6H12N4)2SO4·4H2O. Chin. J. Struct. Chem. 2015, 20, 1682–1688.

    19. [19]

      Ammar, M. K.; Jouini, T.; Driss, A. Synthesis and structural characterization of dihexamethylenetetraminetetraaquocobalt(II) hexaaquocobalt(II) sulfate hexahydrate. J. Chem. Crystallogr. 2000, 30, 265–268.  doi: 10.1023/A:1009599224324

    20. [20]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2010, 42, 339–341.

    21. [21]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    22. [22]

      Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 2014, 47, 806–809.

    23. [23]

      Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. D Struct. Bio. 2009, D65, 148–155.

    24. [24]

      Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B Struct. Sci. 2002, 58, 389–397.

    25. [25]

      Yan, P.; Gao, Y.; Lu, Z.; Xue, G.; Zhao, Y. Application of crystal maker demo in crystallography and mineralogy teaching. Guide Sci. Educ. 2014, 7S, 125–126.

    26. [26]

      Feng, X.; Liu, J.; Li, J.; Ma, L. F.; Wang, L. Y.; Ng, S. W.; Qin, G. Z. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: structure diversity and properties. J. Solid State Chem. 2015, 230, 80–89.

    27. [27]

      Feng, X.; Shang, Y. P.; Wang, L. Y.; Hong, M. Z.; Fang, H. P.; Zhao, X.; Li, Z. J. A new manganese coordination polymer based on azobenzene tetracarboxylate and auxiliary pyridine ligand: synthesis, crystal structure and magnetic property. Chin. J. Struct. Chem. 2021, 40, 217–224.

    28. [28]

      Xiang, L.; Guo, X. F.; Li, X. X.; Hu, X. L. Temperature-dependent polymorphism in Co(II) coordination polymers from 5-nitroisophthalate and 1, 3-bis(4-pyridyl)propane. Chin. J. Struct. Chem. 2013, 11, 1680–1686.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1)
  • Abstract views(284)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return