Citation: Wan-Jun YU, Xing-Hong GONG, Hao-Ran QIN. Efficient Near-infrared Down-conversion Phosphor of Ce3+/Yb3+ Co-doped La3Ga5SiO14 and Its Spectral Structural Modulation[J]. Chinese Journal of Structural Chemistry, ;2021, 40(9): 1194-1204. doi: 10.14102/j.cnki.0254–5861.2011–3111 shu

Efficient Near-infrared Down-conversion Phosphor of Ce3+/Yb3+ Co-doped La3Ga5SiO14 and Its Spectral Structural Modulation

  • Corresponding author: Hao-Ran QIN, qinhaoran@fjirsm.ac.cn
  • Received Date: 22 January 2021
    Accepted Date: 30 March 2021

    Fund Project: the Ministry of Science and Technology of the People's Republic of China 2016YFB0701002Chinese Academy of Sciences KFJ-STS-QYZX-069Chinese Academy of Sciences XDB20000000Natural Science Foundation of Fujian Province 2019J01127

Figures(14)

  • A series of near-infrared (NIR) down-conversion phosphors of La3Ga5SiO14 (LGS): Ce3+/Yb3+ were synthesized via high-temperature solid-state reaction. Under excitation at 345 nm, the phosphors show strong NIR emission around 978 nm, which matches well with the optimal spectral response of crystalline silicon (c-Si) solar cells. The emission spectra and decay curves were used to demonstrate the energy transfer from Ce3+ to Yb3+. The energy transfer mechanism was discussed in detail, indicating that the energy transfer from Ce3+ to Yb3+ is dominated by a single photon process, and the energy transfer efficiency is up to 51%. In addition, La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3): Ce3+/Yb3+ were also synthesized. The NIR emission intensity of La3Ga2Al3SiO14: 1%Ce3+/5%Yb3+ is 4.6 times that of LGS: 1%Ce3+/5%Yb3+, and the thermal relaxation was used to explain this phenomenon. The results show that La3Ga5-zAlzSiO14 (z = 0, 1, 2, 3): 1%Ce3+/5%Yb3+ phosphors have the potential to increase the conversion efficiency of c-Si solar cells.
  • 加载中
    1. [1]

      Ho, W. J.; Shen, Y. T.; Deng, Y. J.; Yeh, C. W.; Sue, R. S. Performance enhancement of planar silicon solar cells through utilization of two luminescent down-shifting Eu-doped phosphor species. Thin Solid Films 2016, 618, 141−145.  doi: 10.1016/j.tsf.2016.03.063

    2. [2]

      Yu, D. C.; Rabouw, F. T.; Boon, W. Q.; Kieboom, T.; Ye, S.; Zhang, Q. Y.; Meijerink, A. Insights into the energy transfer mechanism in Ce3+-Yb3+ codoped YAG phosphors. Phys. Rev. B 2014, 90, 165126−7.  doi: 10.1103/PhysRevB.90.165126

    3. [3]

      Aarts, L.; Van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 2009, 106, 023522−6.  doi: 10.1063/1.3177257

    4. [4]

      Strumpel, C.; McCann, M.; Beaucarne, G.; Arkhipov, V.; Slaoui, A.; Svrcek, V.; Del Canizo, C.; Tobias, I. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials. Sol. Energ. Mat. Sol. C 2007, 91, 238−249.  doi: 10.1016/j.solmat.2006.09.003

    5. [5]

      Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510−519.  doi: 10.1063/1.1736034

    6. [6]

      Zhao, J.; Guo, C. F.; Li, T. Near-infrared down-conversion and energy transfer mechanism of Ce3+–Yb3+ co-doped Ba2Y(BO3)2Cl phosphors. Ecs. J. Solid State Sci. 2016, 5, R3055−R3058.

    7. [7]

      Bouajaj, A.; Belmokhtar, S.; Britel, M. R.; Armellini, C.; Boulard, B.; Belluomo, F.; Di Stefano, A.; Polizzi, S.; Lukowiak, A.; Ferrari, M.; Enrichi, F. Tb3+/Yb3+ codoped silica-hafnia glass and glass-ceramic waveguides to improve the efficiency of photovoltaic solar cells. Opt. Mater. 2016, 52, 62−68.  doi: 10.1016/j.optmat.2015.12.013

    8. [8]

      Zhao, F.; Liang, Y.; Lee, J. B.; Hwang, S. J. Applications of rare earth Tb3+–Yb3+ co-doped down-conversion materials for solar cells. Mat. Sci. Eng. B-Adv. 2019, 248, 114404−4.  doi: 10.1016/j.mseb.2019.114404

    9. [9]

      Taniguchi, M. M.; Zanuto, V. S.; Portes, P. N.; Malacarne, L. C.; Astrath, N. G. C.; Marconi, J. D.; Belancon, M. P. Glass engineering to enhance Si solar cells: a case study of Pr3+-Yb3+ codoped tellurite-tungstate as spectral converter. J. Non-Cryst. Solids 2019, 526, 119717−6.  doi: 10.1016/j.jnoncrysol.2019.119717

    10. [10]

      Chang, W. X.; Li, L.; Dou, M. W.; Yan, Y. L.; Jiang, S.; Pan, Y.; Cui, M.; Wu, Z. J.; Zhou, X. J. Dual-mode downconversion luminescence with broad near-ultraviolet and blue light excitation in Tm3+/Yb3+ codoped oxy-fluoride glasses for c-Si solar cells. Mater. Res. Bull. 2019, 112, 109−114.  doi: 10.1016/j.materresbull.2018.12.011

    11. [11]

      Yu, T.; Yu, D. C.; Lin, H. H.; Zhang, Q. Y. Single-band near-infrared quantum cutting of Ho3+–Yb3+ codoped KLu2F7 phosphors by energy clustering. J. Alloy. Compd. 2017, 695, 1154−1159.  doi: 10.1016/j.jallcom.2016.10.242

    12. [12]

      Zhang, Q. H.; Wang, J.; Zhang, G. G.; Su, Q. UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl: Ce3+, Tb3+, Yb3+ phosphor. J. Mater. Chem. 2009, 19, 7088−7092.  doi: 10.1039/b906954b

    13. [13]

      Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P.; Weng, F. Y. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses. J. Appl. Phys. 2008, 104, 116105−4.  doi: 10.1063/1.3040005

    14. [14]

      Li, J.; Chen, L.; Hao, Z. D.; Zhang, X.; Zhang, L. G.; Luo, Y. S.; Zhang, J. H. Efficient near-infrared down-conversion and energy transfer mechanism of Ce3+/Yb3+ codoped calcium scandate phosphor. Inorg. Chem. 2015, 54, 4806−4810.  doi: 10.1021/acs.inorgchem.5b00280

    15. [15]

      Liu, Z. J.; Li, J. Y.; Yang, L. Y.; Chen, Q. Q.; Chu, Y. B.; Dai, N. L. Efficient near-infrared quantum cutting in Ce3+–Yb3+ codoped glass for solar photovoltaic. Sol. Energ. Mat. Sol. C 2014, 122, 46−50.  doi: 10.1016/j.solmat.2013.10.030

    16. [16]

      Tai, Y. P.; Li, X. Z.; Du, X. G.; Pan, B. L.; Yuan, G. H. Broadband near-infrared quantum cutting by Ce–Yb codoped YAG transparent glass ceramics for silicon solar cells. RSC Adv. 2018, 8, 23268−23273.  doi: 10.1039/C8RA04154G

    17. [17]

      Ueda, J.; Tanabe, S. Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics. J. Appl. Phys. 2009, 106, 043101−6.  doi: 10.1063/1.3194310

    18. [18]

      Zhao, L.; Han, L. L.; Wang, Y. H. Efficient near-infrared down-conversion in KCaGd(PO4)2: Ce3+, Yb3+. Opt. Mater. Express 2014, 4, 1456−1464.  doi: 10.1364/OME.4.001456

    19. [19]

      Zhou, W. L.; Yang, J.; Wang, J.; Li, Y.; Kuang, X. J.; Tang, J. K.; Liang, H. B. Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+. Opt. Express 2012, 20, A510−A518.  doi: 10.1364/OE.20.00A510

    20. [20]

      Zhang, Q. H.; Ni, H. Y.; Lin, L. T.; Ding, J. M.; Ding, J. H.; Li, X. B. Communication-an intense broadband sensitized near-infrared emitting GdAl3(BO3)4: Ce3+, Yb3+ phosphor. ECS J. Solid State Sci. 2019, 8, R47−R49.

    21. [21]

      Wei, H. W.; Shao, L. M.; Jiao, H.; Jing, X. P. Ultraviolet and near-infrared luminescence of LaBO3: Ce3+, Yb3+. Opt. Mater. 2018, 75, 442−447.  doi: 10.1016/j.optmat.2017.10.011

    22. [22]

      Chen, J. D.; Guo, H.; Li, Z. Q.; Zhang, H.; Zhuang, Y. X. Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer. Opt. Mater. 2010, 32, 998−1001.  doi: 10.1016/j.optmat.2010.01.040

    23. [23]

      Karunakaran, S. K.; Lou, C. G.; Arumugam, G. M.; Cao, H. H.; Pribat, D. Efficiency improvement of Si solar cells by down-shifting Ce3+ doped and down-conversion Ce3+–Yb3+ co-doped YAG phosphors. Sol. Energy 2019, 188, 45−50.  doi: 10.1016/j.solener.2019.05.076

    24. [24]

      Takeda, H.; Kato, T.; Chani, V. I.; Morikoshi, H.; Shimamura, K.; Fukuda, T. Effect of (Sr, Ba) substitution in La3Ga5SiO14 and La3M0.5Ga5.5O14 (M = Nb5+, Ta5+) crystals on their synthesis, structure and piezoelectricity. J. Alloy. Compd. 1999, 290, 79−84.  doi: 10.1016/S0925-8388(99)00203-0

    25. [25]

      Reinhardt, A.; Zych, A.; Kohler, I.; Albert, B. Disordered langasites La3Ga5MO14: Eu3+ (M = Si, Ge, Ti) as red-emitting LED phosphors. Dalton. T. 2018, 47, 5703−5713.  doi: 10.1039/C8DT00671G

    26. [26]

      Uda, S.; Wang, S. Q.; Konishi, N.; Inaba, H.; Harada, J. Growth technology of piezoelectric langasite single crystal. J. Cryst. Growth 2005, 275, 251−258.  doi: 10.1016/j.jcrysgro.2004.10.099

    27. [27]

      Wang, Q. G.; Su, L. B.; Li, H. J.; Zheng, L. H.; Xu, X. D.; Tang, H. L.; Jiang, D. P.; Wu, F; Xu, J. Spectroscopic properties of Er/Ce-codoped La3Ga5SiO14. Chin. Phys. B 2012, 21, 386−392.

    28. [28]

      Marimuthu, N.; Parasurman, R.; Rathnakumari, M.; Kumar, P.; Upadhyay, R. Synthesis and transport properties of Al substituted langasite ceramics. J. Mater. Sci. -Mater. E 2018, 29, 1280−1288.  doi: 10.1007/s10854-017-8033-9

    29. [29]

      Takeda, H.; Kumatoriya, M.; Shiosaki, T. Effect of aluminum substitution in La3Ga5SiO14 crystals on their structure and piezoelectricity. Appl. Phys. Lett. 2001, 79, 4201−4203.  doi: 10.1063/1.1426274

    30. [30]

      Kumatoriya, M.; Sato, H.; Nakanishi, J.; Fujii, T.; Kadota, M.; Sakabe, Y. Crystal growth and electromechanical properties of Al substituted langasite (La3Ga5-xAlxSiO14). J. Cryst. Growth 2001, 229, 289−293.  doi: 10.1016/S0022-0248(01)01152-6

    31. [31]

      Zhao, J. X.; Liang, Y. N.; Guan, L.; Wang, G. Q.; Ma, J. X.; Dong, G. Y.; Wang, F. H.; Wang, D. W.; Li, X. From blue to cyan emission: Ce3+ and Tb3+ co-doped silicon phosphate phosphors with high thermal stability. Phys. Chem. Chem. Phys. 2020, 22, 9405−9414.  doi: 10.1039/D0CP00059K

    32. [32]

      Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lu, S. Z.; Zhao, H. F. The energy transfer mechanism in Pr3+ and Yb3+ codoped β-NaLuF4 nanocrystals. Phys. Chem. Chem. Phys. 2014, 16, 9289−9293.  doi: 10.1039/C4CP01184H

    33. [33]

      Wu, D.; Dong, X. L.; Xiao, W. G.; Hao, Z. D.; Zhang, J. H. Efficient visible-to-NIR spectral conversion for polycrystalline Si solar cells and revisiting the energy transfer mechanism from Ce3+ to Yb3+ in Lu3Al5O12 host. Inorg. Chem. 2019, 58, 234−242.  doi: 10.1021/acs.inorgchem.8b02304

    34. [34]

      Ogieglo, J. M.; Katelnikovas, A.; Zych, A.; Juestel, T.; Meijerink, A.; Ronda, C. R. Luminescence and luminescence quenching in Gd3(Ga, Al)5O12 scintillators doped with Ce3+. J. Phys. Chem. A 2013, 117, 2479−2484.  doi: 10.1021/jp309572p

    35. [35]

      Zhu, S. Q.; Zhang, X. Y.; Li, W. Y.; Liu, M. Y.; Cheng, L. Q.; Mi, X. Y.; Lu, P. Y. Phase transformation and luminescence properties of Y2.94Al5-xGaxO12: 0.06Ce3+ phosphors. Ceram. Int. 2019, 45, 4964−4971.  doi: 10.1016/j.ceramint.2018.11.196

    36. [36]

      Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 053102−7.  doi: 10.1063/1.3632069

    37. [37]

      Zhou, Y. N.; Zhuang, W.; Hu, Y. S.; Liu, R.; Xu, H. B.; Chen, M. Y.; Liu, Y. H.; Li, Y. F.; Zheng, Y. L.; Chen, G. T. Cyan-green phosphor (Lu2M)(Al4Si)O12: Ce3+ for high-quality led lamp: tunable photoluminescence properties and enhanced thermal stability. Inorg. Chem. 2019, 58, 1492−1500.  doi: 10.1021/acs.inorgchem.8b03017

    38. [38]

      Denault, K. A.; Brgoch, J.; Gaultois, M. W.; Mikhailovsky, A.; Petry, R.; Winkler, H.; DenBaars, S. P.; Seshadri, R. Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2-xSiO4: Eu2+ orthosilicate phosphors. Chem. Mater. 2014, 26, 2275−2282.  doi: 10.1021/cm500116u

    39. [39]

      Itoh, M.; Takagi, S.; Kitaura, M.; Fujita, M.; Endo, N. Luminescence properties of piezoelectric single crystals with langasite structure. J. Lumin. 2007, 122, 205−207.

    40. [40]

      Cao, G.; Rabenberg, L. K.; Nunn, C. M.; Mallouk, T. E. Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice. Chem. Mater. 1991, 3, 149−156.  doi: 10.1021/cm00013a032

    41. [41]

      Zeng, W.; Wang, Y. H.; Han, S. C.; Chen, W. B.; Li, G.; Wang, Y. Z.; Wen, Y. Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl: Eu2+, Dy3+. J. Mater. Chem. C 2013, 1, 3004−3011.  doi: 10.1039/c3tc30182f

    42. [42]

      Geng, W. Y.; Zhou, X. F.; Ding, J. Y.; Li, J.; Wang, Y. H. K7Ca9(Si2O7)4F: Ce3+: a novel blue-emitting phosphor with good thermal stability for ultraviolet-excited light emitting diodes. J. Mater. Chem. C 2017, 5, 11605−11613.  doi: 10.1039/C7TC02561K

    43. [43]

      Hermus, M.; Phan, P. C.; Duke, A. C.; Brgoch, J. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba2(Y1-xLux)5B5O17: Ce3+ (x = 0~1). Chem. Mater. 2017, 29, 5267−5275.  doi: 10.1021/acs.chemmater.7b01416

    44. [44]

      Ueda, J.; Aishima, K.; Tanabe, S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3). Opt. Mater. 2013, 35, 1952−1957.  doi: 10.1016/j.optmat.2012.11.016

    45. [45]

      Setlur, A. A.; Shiang, J. J.; Hannah, M. E.; Happek, U. Phosphor quenching in LED packages: measurements, mechanisms, and paths forward. Proc. SPIE 2009, 7422, 74220E−74228E.  doi: 10.1117/12.829136

    46. [46]

      Tian, Y. Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs. J. Sol. State Light. 2014, 1, 1−15.  doi: 10.1186/2196-1107-1-1

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    5. [5]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    6. [6]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    7. [7]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    8. [8]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    11. [11]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    12. [12]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    13. [13]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    14. [14]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    15. [15]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    16. [16]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    19. [19]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    20. [20]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

Metrics
  • PDF Downloads(2)
  • Abstract views(325)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return