Citation: Yi-Wei HUANG, Jing-Yun MAO, Qing-Rong QIAN, Hun XUE, Yan-Ru LIU. Study on the Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p-block Metal Composite Oxides Sr1.36Sb2O6 and Sr2Sb2O7[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 394-402. doi: 10.14102/j.cnki.0254–5861.2011–3105 shu

Study on the Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p-block Metal Composite Oxides Sr1.36Sb2O6 and Sr2Sb2O7

  • Corresponding author: Hun XUE, xuehun@fjnu.edu.cn Yan-Ru LIU, yrliu@fjnu.edu.cn
  • Received Date: 20 January 2021
    Accepted Date: 1 February 2021

    Fund Project: the National Natural Science Foundation of China 21875037the National Natural Science Foundation of China 51502036the National Key Research and Development Program of China 2016YFB0302303the National Key Research and Development Program of China 2019YFC1908203the Natural Science Foundation of Distinguished Young Scholars of Fujian Province 2019J06015

Figures(8)

  • p-block metal composite oxides Sr1.36Sb2O6 and Sr2Sb2O7 synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been extensively studied. The effects of synthesis conditions on the photocatalytic activity were discussed. The Sr1.36Sb2O6-100 ℃-24 h-5 and Sr2Sb2O7-150℃-24 h-2 samples prepared under optimal conditions exhibited remarkably different photocatalytic activities. The essential factors influencing the difference of photocatalytic performance were revealed. The results showed that the different photocatalytic activities observed for Sr1.36Sb2O6 and Sr2Sb2O7 could be attributed to their different electronic and crystal structures. Our work will provide a new perspective for the screening and design of p-block metal composite oxide photocatalysts to enhance the removal of organic pollutants in the environment.
  • 加载中
    1. [1]

      Xu, L. Y.; Zhang, H.; Xiong, P.; Zhu, Q. Q.; Liao, C. Y.; Jiang, G. B. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci. Total. Environ. 2020, 141975–141975.

    2. [2]

      Dai, Y. J.; Liu, M.; Li, J. J.; Yang, S. S.; Sun, Y.; Sun, Q. Y.; Wang, W. S.; Lu, L.; Zhang, K. X.; Xu, J. Y.; Zheng, W. L.; Hu, Z. Y.; Yang, Y. H.; Gao, Y. W.; Liu, Z. H. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 2020, 55, 1005–1021.  doi: 10.1080/01496395.2019.1577445

    3. [3]

      Rasheed, H. U.; Lv, X. M.; Wei, W.; Sam, D. K.; Ullah, N.; Xie, J. M.; Zhu, W. H. Highly efficient photocatalytic degradation of the tetracycline hydrochloride on the alpha-Fe2O3@CN composite under the visible light. J. Environ. Chem. Eng. 2019, 7, 103322.  doi: 10.1016/j.jece.2019.103322

    4. [4]

      Li, W.; Ding, H.; Ji, H.; Dai, W. B.; Guo, J. P.; Du, G. X. Photocatalytic degradation of tetracycline hydrochloride via a CdS-TiO2 heterostructure composite under visible light irradiation. Nanomaterials 2018, 8, 415.  doi: 10.3390/nano8060415

    5. [5]

      Wu, S. Q.; Hu, H. Y.; Lin, Y.; Zhang, J. L.; Hu, Y. H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842.  doi: 10.1016/j.cej.2019.122842

    6. [6]

      Zeng, L. X.; Wang, J. Q.; Qian, Q. R.; Chen, Q. H.; Liu, X. P.; Luo, Y. J.; Xue, H.; Li, Z. H. Photocatalytic degradation of tetracycline hydrochloride over rugby-like beta-Ga2O3 with a 3D hierarchically assembled porous structure for environmental remediation. Catal. Sci. Technol. 2020, 10, 3315–3323.  doi: 10.1039/D0CY00562B

    7. [7]

      Xue, H.; Liao, S. X.; Chen, Y. L.; Qian, Q. R.; Liu, X. P.; Chen, Q. H. Application and mechanism of ZnSb2O4 and ZnSb2O6 in the photocatalytic degradation of tetracycline hydrochloride. Chin. J. Struct. Chem. 2019, 38, 837–847.

    8. [8]

      Lwin, H. M.; Zhan, W. Q.; Song, S. X.; Jia, F. F.; Zhou, J. B. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst. Chem. Phys. Lett. 2019, 736, 136806.  doi: 10.1016/j.cplett.2019.136806

    9. [9]

      Rasheed, H. U.; Lv, X. M.; Wei, W.; Yaseen, W.; Ullah, N.; Xie, J. M.; Zhu, W. H. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation. J. Environ. Chem. Eng. 2019, 7, 103152.  doi: 10.1016/j.jece.2019.103152

    10. [10]

      Chen, W.; Chang, L.; Ren, S. B.; He, Z. C.; Huang, G. B.; Liu, X. H. Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J. Hazard. Mater. 2020, 384, 121308.  doi: 10.1016/j.jhazmat.2019.121308

    11. [11]

      Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.  doi: 10.1039/b816677n

    12. [12]

      Kadowaki, H.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Simodaira, Y.; Inoue, Y. Photocatalytic activity of the RuO2-dispersed composite p-block metal oxide LiInGeO4 with d10-d10 configuration for water decomposition. J. Phys. Chem. B 2005, 109, 22995–23000.  doi: 10.1021/jp0544686

    13. [13]

      Sato, J.; Kobayashi, H.; Ikarashi, K.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J. Phys. Chem. B 2004, 108, 4369–4375.  doi: 10.1021/jp0373189

    14. [14]

      Chen, L. C.; Cui, W.; Li, J. Y.; Wang, H.; Dong, X. A.; Chen, P.; Zhou, Y.; Dong, F. The high selectivity for benzoic acid formation on Ca2Sb2O7 enables efficient and stable toluene mineralization. Appl. Catal. B-Environ. 2020, 118948.

    15. [15]

      Huang, R. K.; Xu, X. M.; Zhu, J.; Liu, W. J.; Yuan, R. S.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Nanocrystalline CaSb2O5(OH)2 and Ca2Sb2O7: controlled syntheses, electronic structures and photocatalytic activity. Appl. Catal. B-Environ. 2012, 127, 205–211.  doi: 10.1016/j.apcatb.2012.08.025

    16. [16]

      Zhang, M.; Chen, L. M.; Yao, S. Y.; Long, Y. M.; Li, W. F.; Wang, Z. S. Effect of calcination temperature on the photocatalytic activity of CaSb2O6 nanoparticles prepared by co-precipitation method. Catal. Commun. 2014, 48, 29–32.  doi: 10.1016/j.catcom.2014.01.013

    17. [17]

      Li, G. Q.; Wang, W. L.; Yang, N.; Zhang, W. F. Composition dependence of AgSbO3/NaNbO3 composite on surface photovoltaic and visible-light photocatalytic properties. Appl. Phys. a-Mater. 2011, 103, 251–256.  doi: 10.1007/s00339-010-6025-1

    18. [18]

      Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M = Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J. Photoch. Photobio. A 2002, 148, 85–89.  doi: 10.1016/S1010-6030(02)00076-X

    19. [19]

      Liu, W. J.; Lin, P. Y.; Jin, H.; Xue, H.; Zhang, Y. F.; Li, Z. H. Nanocrystalline ZnSb2O6: hydrothermal synthesis, electronic structure and photocatalytic activity. J. Mol. Catal. a-Chem. 2011, 349, 80–85.  doi: 10.1016/j.molcata.2011.08.023

    20. [20]

      Lin, X. P.; Huang, F. Q.; Wang, W. D.; Zhang, K. L. A novel photocatalyst BiSbO4 for degradation of methylene blue. Appl. Catal. a-Gen. 2006, 307, 257–262.  doi: 10.1016/j.apcata.2006.03.057

    21. [21]

      Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shan, Z. C.; Shi, J. L. Methyl orange degradation over a novel Bi-based photocatalyst Bi3SbO7: correlation of crystal structure to photocatalytic activity. Dyes. Pigments 2008, 78, 39–47.  doi: 10.1016/j.dyepig.2007.10.005

    22. [22]

      Kako, T.; Kikugawa, N.; Ye, J. Photocatalytic activities of AgSbO3 under visible light irradiation. Catal. Today 2008, 131, 197–202.  doi: 10.1016/j.cattod.2007.10.094

    23. [23]

      Xue, H.; Chen, Y. Y.; Ding, N.; Chen, Q. H.; Luo, Y. J.; Liu, X. P.; Xiao, L. R.; Qian, Q. R. Hydrothermal synthesis of Sr1.36Sb2O6 nano-octahedra with photocatalytic activity for overall splitting of water. Catal. Commun. 2016, 74, 5–9.  doi: 10.1016/j.catcom.2015.10.026

    24. [24]

      Xue, H.; Li, Z.; Wu, L.; Ding, Z.; Wang, X.; Fu, X. Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7: hydrothermal syntheses and photocatalytic benzene degradation. J. Phys. Chem. C 2008, 112, 5850–5855.  doi: 10.1021/jp712186r

    25. [25]

      Xue, H.; Li, Z. H.; Dong, H.; Wu, L.; Wang, X. X.; Fu, X. Z. 3D hierarchical architectures of Sr2Sb2O7: hydrothermal syntheses, formation mechanisms, and application in aqueous-phase photocatalysis. Cryst. Growth. Des. 2008, 8, 4469–4475.  doi: 10.1021/cg800404e

    26. [26]

      Li, Z. H.; Liu, P.; Fu, X. Z. Wide bandgap p-block metal oxides/hydroxides for photocatalytic benzene degradation. Acta Phys-Chim. Sin. 2010, 26, 877–884.  doi: 10.3866/PKU.WHXB20100404

    27. [27]

      Chen, X.; Xue, H.; Li, Z. H.; Wu, L.; Wang, X. X.; Fu, X. Z. Ternary wide band gap p-block metal semiconductor ZnGa2O4 for photocatalytic benzene degradation. J. Phys. Chem. C 2008, 112, 20393–20397.  doi: 10.1021/jp808194r

    28. [28]

      Emeline, A.; Kataeva, G. V.; Litke, A. S.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. Langmuir. 1998, 14, 5011–5022.  doi: 10.1021/la980083l

    29. [29]

      Pare, B.; Jonnalagadda, S. B.; Tomar, H.; Singh, P.; Bhagwat, V. W. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 2008, 232, 80–90.  doi: 10.1016/j.desal.2008.01.007

    30. [30]

      Sun, M.; Li, D.; Zhang, W.; Fu, X.; Shao, Y.; Li, W.; Xiao, G.; He, Y. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds. Nanotechnology 2010, 21, 355601.  doi: 10.1088/0957-4484/21/35/355601

    31. [31]

      Liu, T. T.; Wang, L.; Lu, X.; Fan, J. M.; Cai, X. X.; Gao, B.; Miao, R.; Wang, J. X.; Lv, Y. T. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways. Rsc. Adv. 2017, 7, 12292–12300.  doi: 10.1039/C7RA00199A

    32. [32]

      Lv, Y. H.; Zhu, Y. Y.; Zhu, Y. F. Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C 2013, 117, 18520–18528.  doi: 10.1021/jp405596e

    33. [33]

      Deng, Y. C.; Tang, L.; Zeng, G. M.; Feng, C. Y.; Dong, H. R.; Wang, J. J.; Feng, H. P.; Liu, Y. N.; Zhou, Y. Y.; Pang, Y. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation. Environ. Sci-Nano. 2017, 4, 1494–1511.  doi: 10.1039/C7EN00237H

    34. [34]

      Sato, J.; Kobayashi, H.; Inoue, Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. J. Phys. Chem. B 2003, 107, 7970–7975.  doi: 10.1021/jp030021q

    35. [35]

      Li, G.; Dimitrijevic, N. M.; Chen, L.; Nichols, J. M.; Rajh, T.; Gray, K. A. The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J. Am. Chem. Soc. 2008, 130, 5402–5403.  doi: 10.1021/ja711118u

  • 加载中
    1. [1]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    9. [9]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    10. [10]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    11. [11]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    14. [14]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    15. [15]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    16. [16]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    17. [17]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    18. [18]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

Metrics
  • PDF Downloads(1)
  • Abstract views(360)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return