Activation of Carbon Dioxide by Gas-phase Metal Species
- Corresponding author: Xiao-Na LI, lxn@iccas.ac.cn
Citation:
Yun-Zhu LIU, Xiao-Na LI, Sheng-Gui HE. Activation of Carbon Dioxide by Gas-phase Metal Species[J]. Chinese Journal of Structural Chemistry,
;2021, 40(10): 1385-1403.
doi:
10.14102/j.cnki.0254–5861.2011–3081
Franco, F.; Rettenmaier, C.; Jeon, H. S.; Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884−6946.
doi: 10.1039/D0CS00835D
Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49, 4360−4404.
doi: 10.1039/D0CS00075B
Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984−8034.
doi: 10.1021/acs.chemrev.9b00723
Su, X.; Yang, X. F.; Huang, Y.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656−664.
doi: 10.1021/acs.accounts.8b00478
Mou, L. H.; Jiang, G. D.; Li, Z. Y.; He, S. G. Activation of dinitrogen by gas-phase species. Chin. J. Chem. Phys. 2020, 33, 507−520.
doi: 10.1063/1674-0068/cjcp2008141
Wang, L. N.; Li, X. N.; He, S. G. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters. Sci. China Mater. 2020, 63, 892−902.
doi: 10.1007/s40843-019-1206-2
Li, X. N.; Wang, L. N.; Mou, L. H.; He, S. G. Catalytic CO oxidation by gas-phase metal oxide clusters. J. Phys. Chem. A 2019, 123, 9257−9267.
doi: 10.1021/acs.jpca.9b05185
Zhao, Y. X.; Li, Z. Y.; Yang, Y.; He, S. G. Methane activation by gas phase atomic clusters. Acc. Chem. Res. 2018, 51, 2603−2610.
doi: 10.1021/acs.accounts.8b00403
Schwarz, H. Single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 2017, 7, 4302−4314.
doi: 10.1039/C6CY02658C
Chi, C.; Qu, H.; Meng, L.; Kong, F.; Luo, M.; Zhou, M. CO oxidation by group 3 metal monoxide cations supported on [Fe(CO)4]2−. Angew. Chem. Int. Ed. 2017, 56, 14096−14101.
doi: 10.1002/anie.201707898
Zavras, A.; Khairallah, G. N.; Krstić, M.; Girod, M.; Daly, S.; Antoine, R.; Maitre, P.; Mulder, R. J.; Alexander, S. A.; Bonačić-Koutecký, V.; Dugourd, P.; O'Hair, R. A. J. Ligand-induced substrate steering and reshaping of [Ag2(H)]+ scaffold for selective CO2 extrusion from formic acid. Nat. Commun. 2016, 7, 11746−8.
doi: 10.1038/ncomms11746
Harding, D. J.; Fielicke, A. Platinum group metal clusters: from gas-phase structures and reactivities towards model catalysts. Chem. Eur. J. 2014, 20, 3258−3267.
doi: 10.1002/chem.201304586
Lang, S. M.; Bernhardt, T. M. Gas phase metal cluster model systems for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2012, 14, 9255−9269.
doi: 10.1039/c2cp40660h
Yin, S.; Bernstein, E. R. Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int. J. Mass Spectrom. 2012, 321–322, 49−65.
Roach, P. J.; Woodward, W. H.; Castleman, A. W.; Reber, A. C.; Khanna, S. N. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 2009, 323, 492−495.
doi: 10.1126/science.1165884
Burgert, R.; Schnöckel, H.; Grubisic, A.; Li, X.; Stokes, S. T.; Bowen, K. H.; Ganteför, G. F.; Kiran, B.; Jena, P. Spin conservation accounts for aluminum cluster anion reactivity pattern with O2. Science 2008, 319, 438−442.
doi: 10.1126/science.1148643
Schwarz, H. Metal-mediated activation of carbon dioxide in the gas phase: mechanistic insight derived from a combined experimental/computational approach. Coord. Chem. Rev. 2017, 334, 112−123.
doi: 10.1016/j.ccr.2016.03.009
Wang, M.; Sun, C.; Cui, J.; Zhang, Y.; Ma, J. Clean and efficient transformation of CO2 to isocyanic acid: the important role of triatomic cation ScNH+. J. Phys. Chem. A 2019, 123, 5762−5767.
doi: 10.1021/acs.jpca.9b02133
Firouzbakht, M.; Rijs, N. J.; Schlangen, M.; Kaupp, M.; Schwarz, H. Ligand effects on the reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) towards CO2: gas-phase generation of the elusive cyanoformate by [Co(CN)]+ and [Fe(CN)]+. Top. Catal. 2018, 61, 575−584.
doi: 10.1007/s11244-018-0903-8
Zhou, H. Y.; Wang, M.; Ding, Y. Q.; Ma, J. B. Nb2BN2– cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands. Dalton Trans. 2020, 49, 14081−14087.
doi: 10.1039/D0DT02680H
Koyanagi, G. K.; Bohme, D. K. Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 2006, 110, 1232−1241.
doi: 10.1021/jp0526602
Cheng, P.; Koyanagi, G. K.; Bohme, D. K. Gas-phase reactions of atomic lanthanide cations with CO2 and CS2: room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 2006, 110, 12832−12838.
doi: 10.1021/jp0637431
Li, J.; Geng, C.; Weiske, T.; Schwarz, H. Counter-intuitive gas-phase reactivities of [V2]+ and [V2O]+ towards CO2 reduction: insight from electronic structure calculations. Angew. Chem. Int. Ed. 2020, 59, 12308−12314.
doi: 10.1002/anie.202001223
Goeppert, A.; Czaun, M.; Jones, J. P.; Surya Prakash, G. K.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995−8048.
doi: 10.1039/C4CS00122B
Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703−3727.
doi: 10.1039/c1cs15008a
Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. Rsc Adv. 2018, 8, 7651−7669.
doi: 10.1039/C7RA13546G
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804−9838.
doi: 10.1021/acs.chemrev.6b00816
Kato, S.; Matam, S. K.; Kerger, P.; Bernard, L.; Battaglia, C.; Vogel, D.; Rohwerder, M.; Züttel, A. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem. Int. Ed. 2016, 55, 6028−6032.
doi: 10.1002/anie.201601402
Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. 2011, 50, 12551−12554.
doi: 10.1002/anie.201105481
Tang, S. Y.; Rijs, N. J.; Li, J.; Schlangen, M.; Schwarz, H. Ligand-controlled CO2 activation mediated by cationic titanium hydride complexes, [LTiH]+ (L = Cp2, O). Chem. Eur. J. 2015, 21, 8483−8490.
doi: 10.1002/chem.201500722
Zavras, A.; Ghari, H.; Ariafard, A.; Canty, A. J.; O'Hair, R. A. J. Gas-phase ion-molecule reactions of copper hydride anions [CuH2]− and [Cu2H3]−. Inorg. Chem. 2017, 56, 2387−2399.
doi: 10.1021/acs.inorgchem.6b02145
Zhang, X.; Liu, G.; Meiwes-Broer, K. H.; Ganteför, G.; Bowen, K. CO2 activation and hydrogenation by PtHn− cluster anions. Angew. Chem. Int. Ed. 2016, 55, 9644−9647.
doi: 10.1002/anie.201604308
Jiang, L. X.; Zhao, C.; Li, X. N.; Chen, H.; He, S. G. Formation of gas-phase formate in thermal reactions of carbon dioxide with diatomic iron hydride anions. Angew. Chem. Int. Ed. 2017, 56, 4187−4191.
doi: 10.1002/anie.201611483
Jiang, L. X.; Li, X. N.; He, S. G. Metal-dependent selectivity on the reactions of carbon dioxide with diatomic hydride anions MH– (M = Co, Ni, and Cu). J. Phys. Chem. C 2020, 124, 5928−5933.
doi: 10.1021/acs.jpcc.9b11619
Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. 2011, 50, 8510−8537.
doi: 10.1002/anie.201102010
Musashi, Y.; Sakaki, S. Theoretical study of ruthenium-catalyzed hydrogenation of carbon dioxide into formic acid. Reaction mechanism involving a new type of σ-bond metathesis. J. Am. Chem. Soc. 2000, 122, 3867−3877.
doi: 10.1021/ja9938027
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew. Chem. Int. Ed. 2011, 50, 9948−9952.
doi: 10.1002/anie.201104542
Yang, X.; Hall, M. B. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe−Hδ−···Hδ+−O, bond and methenyl-H4MPT+ triggered hydride transfer. J. Am. Chem. Soc. 2009, 131, 10901−10908.
doi: 10.1021/ja902689n
Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215−221.
doi: 10.1016/0022-1902(61)80142-5
Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; Yao, S.; Xie, J.; Li, Y.; Liu, X.; Ma, D. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew. Chem. Int. Ed. 2017, 56, 10761−10765.
doi: 10.1002/anie.201705002
Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076−3084.
doi: 10.1021/ja5128133
Schultz, R. H.; Armentrout, P. B. The gas-phase thermochemistry of FeH. J. Chem. Phys. 1991, 94, 2262−2268.
doi: 10.1063/1.459897
Mccarthy, M. C.; Field, R. W.; Engleman, R.; Bernath, P. F. Laser and Fourier transform spectroscopy of PtH and PtD. J. Mol. Spectrosc. 1993, 158, 208−236.
doi: 10.1006/jmsp.1993.1067
Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. The gas-phase thermochemistry of TiH. J. Chem. Phys. 1991, 95, 1228−1233.
Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739−9754.
doi: 10.1021/jacs.7b05362
Zhao, B.; Yan, B.; Jiang, Z.; Yao, S.; Liu, Z.; Wu, Q.; Ran, R.; Senanayake, S. D.; Weng, D.; Chen, J. G. High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. Chem. Commun. 2018, 54, 7354−7357.
doi: 10.1039/C8CC03829E
Yoo, C.; Kim, Y. E.; Lee, Y. Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 2018, 51, 1144−1152.
doi: 10.1021/acs.accounts.7b00634
Hicken, A.; White, A. J. P.; Crimmin, M. R. Selective reduction of CO2 to a formate equivalent with heterobimetallic gold···copper hydride complexes. Angew. Chem. Int. Ed. 2017, 56, 15127−15130.
doi: 10.1002/anie.201709072
Sirijaraensre, J.; Limtrakul, J. Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: a DFT study. Appl. Surf. Sci. 2016, 364, 241−248.
doi: 10.1016/j.apsusc.2015.12.117
Zall, C. M.; Linehan, J. C.; Appel, A. M. A molecular copper catalyst for hydrogenation of CO2 to formate. ACS Catal. 2015, 5, 5301−5305.
doi: 10.1021/acscatal.5b01646
Lee, Y.; Anderton, K. J.; Sloane, F. T.; Ermert, D. M.; Abboud, K. A.; García-Serres, R.; Murray, L. J. Reactivity of hydride bridges in high-spin [3M-3(μ-H)] clusters (M = FeII, CoII). J. Am. Chem. Soc. 2015, 137, 10610−10617.
doi: 10.1021/jacs.5b05204
Yu, Y.; Sadique, A. R.; Smith, J. M.; Dugan, T. R.; Cowley, R. E.; Brennessel, W. W.; Flaschenriem, C. J.; Bill, E.; Cundari, T. R.; Holland, P. L. The reactivity patterns of low-coordinate iron-hydride complexes. J. Am. Chem. Soc. 2008, 130, 6624−6638.
doi: 10.1021/ja710669w
Liu, Y. Z.; Jiang, L. X.; Li, X. N.; Wang, L. N.; Chen, J. J.; He, S. G. Gas-phase reactions of carbon dioxide with copper hydride anions Cu2H2–: temperature-dependent transformation. J. Phys. Chem. C 2018, 122, 19379−19384.
doi: 10.1021/acs.jpcc.8b05216
Liu, Y. Z.; Li, X. N.; He, S. G. Reactivity of iron hydride anions Fe2Hn– (n = 0~3) with carbon dioxide. J. Phys. Chem. A 2020, 124, 8414−8420.
doi: 10.1021/acs.jpca.0c06986
Kunkel, C.; Viñes, F.; Illas, F. Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ. Sci. 2016, 9, 141−144.
doi: 10.1039/C5EE03649F
Posada-Pérez, S.; Viñes, F.; Ramirez, P. J.; Vidal, A. B.; Rodriguez, J. A.; Illas, F. The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys. Chem. Chem. Phys. 2014, 16, 14912−14921.
doi: 10.1039/C4CP01943A
Liu, G.; Poths, P.; Zhang, X.; Zhu, Z.; Marshall, M.; Blankenhorn, M.; Alexandrova, A. N.; Bowen, K. H. CO2 hdrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters. J. Am. Chem. Soc. 2020, 142, 7930−7936.
doi: 10.1021/jacs.0c01855
Wu, J.; Wang, L.; Lv, B.; Chen, J. Facile fabrication of BCN nanosheet-encapsulated nano-iron as highly stable Fischer-Tropsch synthesis catalyst. ACS Appl. Mater. Interfaces 2017, 9, 14319−14327.
doi: 10.1021/acsami.7b00561
Sun, W.; Meng, Y.; Fu, Q.; Wang, F.; Wang, G.; Gao, W.; Huang, X.; Lu, F. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces 2016, 8, 9881−9888.
doi: 10.1021/acsami.6b01008
Lin, S.; Ye, X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319−17326.
doi: 10.1021/jp4055445
Zhao, Y. X.; Yang, B.; Li, H. F.; Zhang, Y.; Yang, Y.; Liu, Q. Y.; Xu, H. G.; Zheng, W. J.; He, S. G. Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodium-vanadium bimetallic oxide cluster anions at room temperature. Angew. Chem. Int. Ed. 2020, 59, 21216−21223.
doi: 10.1002/anie.202010026
Yang, Y.; Yang, B.; Zhao, Y. X.; Jiang, L. X.; Li, Z. Y.; Ren, Y.; Xu, H. G.; Zheng, W. J.; He, S. G. Direct conversion of methane with carbon dioxide mediated by RhVO3− cluster anions. Angew. Chem. Int. Ed. 2019, 58, 17287−17292.
doi: 10.1002/anie.201911195
Chen, Q.; Zhao, Y. X.; Jiang, L. X.; Chen, J. J.; He, S. G. Coupling of methane and carbon dioxide mediated by diatomic copper boride cations. Angew. Chem. Int. Ed. 2018, 57, 14134−14138.
doi: 10.1002/anie.201808780
Liu, G.; Ciborowski, S. M.; Zhu, Z.; Chen, Y.; Zhang, X.; Bowen, K. H. The metallo-formate anions, M(CO2)−, M = Ni, Pd, Pt, formed by electron-induced CO2 activation. Phys. Chem. Chem. Phys. 2019, 21, 10955−10960.
doi: 10.1039/C9CP01915D
Zhang, X.; Lim, E.; Kim, S. K.; Bowen, K. H. Photoelectron spectroscopic and computational study of (M−CO2)− anions, M = Cu, Ag, Au. J. Chem. Phys. 2015, 143, 174305−6.
doi: 10.1063/1.4935061
Zhao, Z.; Kong, X.; Yuan, Q.; Xie, H.; Yang, D.; Zhao, J.; Fan, H.; Jiang, L. Coordination-induced CO2 fixation into carbonate by metal oxides. Phys. Chem. Chem. Phys. 2018, 20, 19314−19320.
doi: 10.1039/C8CP02085J
Gong, Y.; Zhou, M. F.; Andrews, L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 2009, 109, 6765−6808.
doi: 10.1021/cr900185x
Zhou, M. F.; Andrews, L.; Bauschlicher, C. W. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem. Rev. 2001, 101, 1931−1961.
doi: 10.1021/cr990102b
Zhang, Q.; Qu, H.; Chen, M.; Zhou, M. Carbon dioxide activation by scandium atoms and scandium monoxide molecules: formation and spectroscopic characterization of ScCO3 and OCScCO3 in solid neon. J. Phys. Chem. A 2016, 120, 425−432.
doi: 10.1021/acs.jpca.5b11809
Zhang, Q.; Chen, M.; Zhou, M. Infrared spectra and structures of the neutral and charged CrCO2 and Cr(CO2)2 isomers in solid neon. J. Phys. Chem. A 2014, 118, 6009−6017.
doi: 10.1021/jp505740j
Zhuang, J.; Li, Z. H.; Fan, K.; Zhou, M. Matrix isolation spectroscopic and theoretical study of carbon dioxide activation by titanium oxide molecules. J. Phys. Chem. A 2012, 116, 3388−3395.
doi: 10.1021/jp301025n
Zhou, M.; Zhou, Z.; Zhuang, J.; Li, Z. H.; Fan, K.; Zhao, Y.; Zheng, X. Carbon dioxide coordination and activation by niobium oxide molecules. J. Phys. Chem. A 2011, 115, 14361−14369.
doi: 10.1021/jp208291g
Jiang, L.; Teng, Y. L.; Xu, Q. Infrared spectroscopic and density functional theory study on the reactions of rhodium and cobalt atoms with carbon dioxide in rare-gas matrixes. J. Phys. Chem. A 2007, 111, 7793−7799.
doi: 10.1021/jp0728095
Liang, B.; Andrews, L. Reactions of laser-ablated osmium and ruthenium atoms with carbon dioxide: matrix infrared spectra and density functional calculations on OMCO, O2MCO, OMCO− (M = Os, Ru), O2Os(CO)2, and OCRu(O2)CO. J. Phys. Chem. A 2002, 106, 4042−4053.
doi: 10.1021/jp0200167
Liang, B. Y.; Andrews, L. Reactions of laser-ablated rhenium atoms with carbon dioxide: matrix infrared spectra and density functional calculations on OReCO, O2ReCO, ORe(CO)2, O2Re(CO)2, OReCO−, and ORe(CO)2−. J. Phys. Chem. A 2002, 106, 595−602.
doi: 10.1021/jp013184s
Zhang, L. N.; Wang, X. F.; Chen, M. H.; Qin, Q. Z. Activation of CO2 by Zr atom. Matrix-isolation FTIR spectroscopy and density functional studies. Chem. Phys. 2000, 254, 231−238.
doi: 10.1016/S0301-0104(00)00031-8
Wang, X. F.; Chen, M. H.; Zhang, L. N.; Qin, Q. Z. Spectroscopic and theoretical studies on the reactions of laser-ablated tantalum with carbon dioxide. J. Phys. Chem. A 2000, 104, 758−764.
doi: 10.1021/jp9927808
Andrews, L.; Zhou, M. F.; Liang, B. Y.; Li, J.; Bursten, B. E. Reactions of laser-ablated U and Th with CO2: neon matrix infrared spectra and density functional calculations of OUCO, OThCO, and other products. J. Am. Chem. Soc. 2000, 122, 11440−11449.
doi: 10.1021/ja0016699
Zhou, M. F.; Liang, B. Y.; Andrews, L. Infrared spectra of OMCO (M = Cr−Ni), OMCO− (M = Cr−Cu), and MCO2− (M = Co−Cu) in solid argon. J. Phys. Chem. A 1999, 103, 2013−2023.
doi: 10.1021/jp984439d
Zhou, M. F.; Andrews, L. Infrared spectra and density functional calculations for OMCO, OM−(η2-CO), OMCO+, and OMOC+ (M = V, Ti) in solid argon. J. Phys. Chem. A 1999, 103, 2066−2075.
doi: 10.1021/jp9844009
Souter, P. F.; Andrews, L. A spectroscopic and theoretical study of the reactions of group 6 metal atoms with carbon dioxide. J. Am. Chem. Soc. 1997, 119, 7350−7360.
doi: 10.1021/ja971038n
Clemmer, D. E.; Weber, M. E.; Armentrout, P. B. Reactions of Al+(1S) with NO2, N2O, and CO2: thermochemistry of AlO and AlO+. J. Phys. Chem. 1992, 96, 10888−10893.
doi: 10.1021/j100205a052
Sievers, M. R.; Armentrout, P. B. Potential energy surface for carbon-dioxide activation by V+: a guided ion beam study. J. Chem. Phys. 1995, 102, 754−762.
doi: 10.1063/1.469188
Griffin, J. B.; Armentrout, P. B. Guided ion beam studies of the reactions of Crn+ (n = 1~18) with CO2: chromium cluster oxide bond energies. J. Chem. Phys. 1998, 108, 8075−8083.
doi: 10.1063/1.476246
Griffin, J. B.; Armentrout, P. B. Guided ion-beam studies of the reactions of Fen+ (n = 1~18) with CO2: iron cluster oxide bond energies. J. Chem. Phys. 1997, 107, 5345−5355.
doi: 10.1063/1.474244
Hintz, P. A.; Ervin, K. M. Chemisorption and oxidation reactions of nickel group cluster anions with N2, O2, CO2, and N2O. J. Chem. Phys. 1995, 103, 7897−7906.
doi: 10.1063/1.470207
Rodgers, M. T.; Walker, B.; Armentrout, P. B. Reactions of Cu+ (1S and 3D) with O2, CO, CO2, N2, NO, N2O, and NO2 studied by guided ion beam mass spectrometry. Int. J. Mass Spectrom. 1999, 182/183, 99−120.
doi: 10.1016/S1387-3806(98)14228-8
Sievers, M. R.; Armentrout, P. B. Activation of carbon dioxide: gas-phase reactions of Y+, YO+, and YO2+ with CO and CO2. Inorg. Chem. 1999, 38, 397−402.
doi: 10.1021/ic981117f
Sievers, M. R.; Armentrout, P. B. Oxidation of CO and reduction of CO2 by gas phase Zr+, ZrO+, and ZrO2+. Int. J. Mass Spectrom. 1999, 185/186/187, 117−129.
Sievers, M. R.; Armentrout, P. B. Gas phase activation of carbon dioxide by niobium and niobium monoxide cations. Int. J. Mass Spectrom. 1998, 179/180, 103−115.
doi: 10.1016/S1387-3806(98)14064-2
Sievers, M. R.; Armentrout, P. B. Reactions of CO and CO2 with gas-phase Mo+, MoO+, and MoO2+. J. Phys. Chem. A 1998, 102, 10754−10762.
doi: 10.1021/jp983694v
Cornehl, H. H.; Wesendrup, R.; Diefenbach, M.; Schwarz, H. A comparative study of oxo-ligand effects in the gas-phase chemistry of atomic lanthanide and actinide cations. Chem. Eur. J. 1997, 3, 1083−1090.
doi: 10.1002/chem.19970030716
Armentrout, P. B.; Cox, R. M. Potential energy surface for the reaction Sm+ + CO2 → SmO+ + CO: guided ion beam and theoretical studies. Phys. Chem. Chem. Phys. 2017, 19, 11075−11088.
doi: 10.1039/C7CP00914C
Demireva, M.; Armentrout, P. B. Activation of CO2 by gadolinium cation (Gd+): energetics and mechanism from experiment and theory. Top. Catal. 2018, 61, 3−19.
doi: 10.1007/s11244-017-0858-1
Lourenço, C.; Michelini, M. C.; Marçalo, J.; Gibson, J. K.; Oliveira, M. C. Gas-phase reaction studies of dipositive hafnium and hafnium oxide ions: generation of the peroxide HfO22+. J. Phys. Chem. A 2012, 116, 12399−12405.
doi: 10.1021/jp3088385
Wesendrup, R.; Schwarz, H. Tantalum-mediated coupling of methane and carbon dioxide in the gas phase. Angew. Chem, Int. Ed. 1995, 34, 2033−2035.
doi: 10.1002/anie.199520331
Santos, M.; Michelini, M. C.; Lourenço, C.; Marçalo, J.; Gibson, J. K.; Oliveira, M. C. Gas-phase oxidation reactions of Ta2+: synthesis and properties of TaO2+ and TaO22+. J. Phys. Chem. A 2012, 116, 3534−3540.
doi: 10.1021/jp300294c
Irikura, K. K.; Beauchamp, J. L. Electronic structure considerations for methane activation by third-row transition-metal ions. J. Phys. Chem. 1991, 95, 8344−8351.
doi: 10.1021/j100174a057
Zhang, X. G.; Armentrout, P. B. Activation of O2, CO, and CO2 by Pt+: the thermochemistry of PtO+. J. Phys. Chem. A 2003, 107, 8904−8914.
doi: 10.1021/jp036014j
Santos, M.; Marçalo, J.; de Matos, A. P.; Gibson, J. K.; Haire, R. G. Gas-phase oxidation reactions of neptunium and plutonium ions investigated via Fourier transform ion cyclotron resonance mass spectrometry. J. Phys. Chem. A 2002, 106, 7190−7194.
doi: 10.1021/jp025733f
Armentrout, P. B.; Beauchamp, J. L. Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O. Chem. Phys. 1980, 50, 27−36.
doi: 10.1016/0301-0104(80)87022-4
Canale, V.; Robinson, R.; Zavras, A.; Khairallah, G. N.; d'Alessandro, N.; Yates, B. F.; O'Hair, R. A. J. Two spin-state reactivity in the activation and cleavage of CO2 by [ReO2]−. J. Phys. Chem. Lett. 2016, 7, 1934−1938.
doi: 10.1021/acs.jpclett.6b00754
Zhang, X. G.; Armentrout, P. B. Activation of O2 and CO2 by PtO+: the thermochemistry of PtO2+. J. Phys. Chem. A 2003, 107, 8915−8922.
doi: 10.1021/jp036015b
Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 2010, 133, 024305−10.
doi: 10.1063/1.3455220
Rothgeb, D. W.; Hossain, E.; Mann, J. E.; Jarrold, C. C. Disparate product distributions observed in Mo(3-x)WxOy− (x = 0~3; y = 3~9) reactions with D2O and CO2. J. Chem. Phys. 2010, 132, 064302−10.
doi: 10.1063/1.3313927
Firouzbakht, M.; Rijs, N. J.; González-Navarrete, P.; Schlangen, M.; Kaupp, M.; Schwarz, H. On the activation of methane and carbon dioxide by [HTaO]+ and [TaOH]+ in the gas phase: a mechanistic study. Chem. Eur. J. 2016, 22, 10581−10589.
doi: 10.1002/chem.201601339
Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout, P. B. Thermochemistry and reactivity of cationic scandium and titanium sulfide in the gas phase. J. Phys. Chem. A 2000, 104, 5046−5058.
doi: 10.1021/jp994228o
Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout, P. B. Experimental and theoretical studies of vanadium sulfide cation. J. Phys. Chem. A 1998, 102, 10060−10073.
doi: 10.1021/jp982199w
Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B. Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+. Int. J. Mass Spectrom. 2006, 249−250, 263−278.
Miller, G. B. S.; Uggerud, E. C−C bond formation of Mg- and Zn-activated carbon dioxide. Chem. Eur. J. 2018, 24, 4710−4717.
doi: 10.1002/chem.201706069
Firouzbakht, M.; Schlangen, M.; Kaupp, M.; Schwarz, H. Mechanistic aspects of CO2 activation mediated by phenyl yttrium cation: a combined experimental/theoretical study. J. Catal. 2016, 343, 68−74.
doi: 10.1016/j.jcat.2015.09.012
Zhou, S. D.; Li, J. L.; Firouzbakht, M.; Schlangen, M.; Schwarz, H. Sequential gas-phase activation of carbon dioxide and methane by [Re(CO)2]+: the sequence of events matters! J. Am. Chem. Soc. 2017, 139, 6169−6176.
doi: 10.1021/jacs.7b01255
Dau, P. D.; Armentrout, P. B.; Michelini, M. C.; Gibson, J. K. Activation of carbon dioxide by a terminal uranium-nitrogen bond in the gas-phase: a demonstration of the principle of microscopic reversibility. Phys. Chem. Chem. Phys. 2016, 18, 7334−7340.
doi: 10.1039/C6CP00494F
Gregoire, G.; Brinkmann, N. R.; van Heijnsbergen, D.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of Mg+(CO2)n and Mg+(CO2)nAr clusters. J. Phys. Chem. A 2003, 107, 218−227.
doi: 10.1021/jp026373z
Walters, R. S.; Brinkmann, N. R.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of mass-selected Al+(CO2)n and Al+(CO2)nAr clusters. J. Phys. Chem. A 2003, 107, 7396−7405.
Jaeger, J. B.; Jaeger, T. D.; Brinkmann, N. R.; Schaefer, H. F.; Duncan, M. A. Infrared photodissociation spectroscopy of Si+(CO2)n and Si+(CO2)nAr complexes − evidence for unanticipated intracluster reactions. Can. J. Chem. 2004, 82, 934−946.
doi: 10.1139/v04-044
Xing, X. P.; Wang, G. J.; Wang, C. X.; Zhou, M. F. Infrared photodissociation spectroscopy of Ti+(CO2)2Ar and Ti+(CO2)n (n = 3~7) complexes. Chin. J. Chem. Phys. 2013, 26, 687−693.
doi: 10.1063/1674-0068/26/06/687-693
Ricks, A. M.; Brathwaite, A. D.; Duncan, M. A. IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 2013, 117, 11490−11498.
Walker, N. R.; Walters, R. S.; Duncan, M. A. Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. J. Chem. Phys. 2004, 120, 10037−10045.
doi: 10.1063/1.1730217
Gregoire, G.; Duncan, M. A. Infrared spectroscopy to probe structure and growth dynamics in Fe+-(CO2)n clusters. J. Chem. Phys. 2002, 117, 2120−2130.
doi: 10.1063/1.1490600
Gregoire, G.; Velasquez, J.; Duncan, M. A. Infrared photodissociation spectroscopy of small Fe+-(CO2)n and Fe+-(CO2)nAr clusters. Chem. Phys. Lett. 2001, 349, 451−457.
doi: 10.1016/S0009-2614(01)01247-7
Yang, D.; Su, M. Z.; Zheng, H. J.; Zhao, Z.; Li, G.; Kong, X. T.; Xie, H.; Fan, H. J.; Zhang, W. Q.; Jiang, L. Infrared photodissociation spectroscopic and theoretical study of Co(CO2)n+ clusters. Chin. J. Chem. Phys. 2019, 32, 223−228.
doi: 10.1063/1674-0068/cjcp1902032
Iskra, A.; Gentleman, A. S.; Kartouzian, A.; Kent, M. J.; Sharp, A. P.; Mackenzie, S. R. Infrared spectroscopy of gas-phase M+(CO2)n (M = Co, Rh, Ir) ion-molecule complexes. J. Phys. Chem. A 2017, 121, 133−140.
doi: 10.1021/acs.jpca.6b10902
Walker, N. R.; Walters, R. S.; Grieves, G. A.; Duncan, M. A. Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J. Chem. Phys. 2004, 121, 10498−10507.
doi: 10.1063/1.1806821
Walker, N. R.; Grieves, G. A.; Walters, R. S.; Duncan, M. A. The metal coordination in Ni+(CO2)n and NiO2+(CO2)m complexes. Chem. Phys. Lett. 2003, 380, 230−236.
doi: 10.1016/j.cplett.2003.08.107
Zhao, Z.; Kong, X.; Yang, D.; Yuan, Q.; Xie, H.; Fan, H.; Zhao, J.; Jiang, L. Reactions of copper and silver cations with carbon dioxide: an infrared photodissociation spectroscopic and theoretical study. J. Phys. Chem. A 2017, 121, 3220−3226.
doi: 10.1021/acs.jpca.7b01320
Kong, X.; Shi, R.; Wang, C.; Zheng, H.; Wang, T.; Liang, X.; Yang, J.; Jing, Q.; Liu, Y.; Han, H.; Zhao, Z.; Fan, H.; Li, G.; Xie, H. Interaction between CO2 and NbO2+: infrared photodissociation spectroscopic and theoretical study. Chem. Phys. 2020, 534, 110755−7.
doi: 10.1016/j.chemphys.2020.110755
Iskra, A.; Gentleman, A. S.; Cunningham, E. M.; Mackenzie, S. R. Carbon dioxide binding to metal oxides: infrared spectroscopy of NbO2+(CO2)n and TaO2+(CO2)n complexes. Int. J. Mass Spectrom. 2019, 435, 93−100.
doi: 10.1016/j.ijms.2018.09.038
Thompson, M. C.; Ramsay, J.; Weber, J. M. Interaction of CO2 with atomic manganese in the presence of an excess negative charge probed by infrared spectroscopy of [Mn(CO2)n]− clusters. J. Phys. Chem. A 2017, 121, 7534−7542.
doi: 10.1021/acs.jpca.7b06870
Thompson, M. C.; Dodson, L. G.; Weber, J. M. Structural motifs of [Fe(CO2)n]− clusters (n = 3~7). J. Phys. Chem. A 2017, 121, 4132−4138.
doi: 10.1021/acs.jpca.7b02742
Knurr, B. J.; Weber, J. M. Infrared spectra and structures of anionic complexes of cobalt with carbon dioxide ligands. J. Phys. Chem. A 2014, 118, 4056−4062.
doi: 10.1021/jp503194v
Knurr, B. J.; Weber, J. M. Interaction of nickel with carbon dioxide in [Ni(CO2)n]− clusters studied by infrared spectroscopy. J. Phys. Chem. A 2014, 118, 8753−8757.
doi: 10.1021/jp507149u
Knurr, B. J.; Weber, J. M. Structural diversity of copper-CO2 complexes: infrared spectra and structures of [Cu(CO2)n]− clusters. J. Phys. Chem. A 2014, 118, 10246−10251.
doi: 10.1021/jp508219y
Knurr, B. J.; Weber, J. M. Solvent-mediated reduction of carbon dioxide in anionic complexes with silver atoms. J. Phys. Chem. A 2013, 117, 10764−10771.
doi: 10.1021/jp407646t
Knurr, B. J.; Weber, J. M. Solvent-driven reductive activation of carbon dioxide by gold anions. J. Am. Chem. Soc. 2012, 134, 18804−18808.
doi: 10.1021/ja308991a
Dodson, L. G.; Thompson, M. C.; Weber, J. M. Interactions of molecular titanium oxides TiOx (x = 1~3) with carbon dioxide in cluster anions. J. Phys. Chem. A 2018, 122, 6909−6917.
doi: 10.1021/acs.jpca.8b06229
Miller, G. B. S.; Esser, T. K.; Knorke, H.; Gewinner, S.; Schöllkopf, W.; Heine, N.; Asmis, K. R.; Uggerud, E. Spectroscopic identification of a bidentate binding motif in the anionic magnesium-CO2 complex ([ClMgCO2]−). Angew. Chem. Int. Ed. 2014, 53, 14407−14410.
doi: 10.1002/anie.201409444
Graham, J. D.; Buytendyk, A. M.; Zhang, X.; Kim, S. K.; Bowen, K. H. Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]− anionic complex. J. Chem. Phys. 2015, 143, 184315−4.
doi: 10.1063/1.4935573
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Yuchen Zhang , Lifeng Ding , Zhenghe Xie , Xin Zhang , Xiaofeng Sui , Jian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334