Recent Progresses in Experimental and Theoretical Studies of Actinide Clusters
- Corresponding author: Han-Shi HU, hshu@mail.tsinghua.edu.cn
Citation:
Han-Shi HU, Xiao-Cheng XU, Cong-Qiao XU, Jun LI. Recent Progresses in Experimental and Theoretical Studies of Actinide Clusters[J]. Chinese Journal of Structural Chemistry,
;2020, 39(7): 1201-1212.
doi:
10.14102/j.cnki.0254–5861.2011–2929
Bursten, B. E. P., E. J.; Sonnenberg, J. L. Recent advances in actinide chemistry; May, I., Alvares, R., Bryan, N., Eds.; Springer: Berlin 2006.
Morss, L. R. E., N. M.; Fuger, J.; Katz, J. J., Eds. The chemistry of the actinide and transactinide elements, 3rd ed.; Springer: Dordrecht. 2006.
Li, J.; Dai, X.; Zhu, L.; Xu, C.; Zhang, D.; Silver, M. A.; Li, P.; Chen, L.; Li, Y.; Zuo, D.; Zhang, H.; Xiao, C.; Chen, J.; Diwu, J.; Farha, O. K.; Albrecht-Schmitt, T. E.; Chai, Z.; Wang, S. 99TcO4- remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 3007.
doi: 10.1038/s41467-018-05380-5
Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Sheng, D.; Diwu, J.; Su, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 2015, 137, 6144‒6147.
doi: 10.1021/jacs.5b02480
Walther, C.; Denecke, M. A. Actinide colloids and particles of environmental concern. Chem. Rev. 2013, 113, 995‒1015.
doi: 10.1021/cr300343c
Shi, W. Q.; Yuan, L. Y.; Wang, C. Z.; Wang, L.; Mei, L.; Xiao, C. L.; Zhang, L.; Li, Z. J.; Zhao, Y. L.; Chai, Z. F. Exploring actinide materials throughsynchrotron radiation techniques. Adv. Mater. 2014, 26, 7807‒7848.
doi: 10.1002/adma.201304323
Wang, D.; van Gunsteren, W. F.; Chai, Z. Recent advances in computational actinoid chemistry. Chem. Soc. Rev. 2012, 41, 5836‒5865.
doi: 10.1039/c2cs15354h
Kaltsoyannis, N. Recent developments in computational actinide chemistry. Chem. Soc. Rev. 2003, 32, 9‒16.
doi: 10.1039/b204253n
Salmon, L.; Thuery, P.; Ephritikhine, M. Polynuclear uranium(Ⅳ) compounds with (μ3-oxo)U3 or (μ4-oxo)U4 cores and compartmental Schiff base ligands. Polyhedron 2006, 25, 1537‒1542.
doi: 10.1016/j.poly.2005.10.015
Biswas, B.; Mougel, V.; Pecaut, J.; Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem. Int. Ed. Engl. 2011, 50, 5745‒5748.
doi: 10.1002/anie.201101327
Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. Engl. 2010, 49, 1736‒1758.
doi: 10.1002/anie.200902483
Nocton, G.; Burdet, F.; Pecaut, J.; Mazzanti, M. Self-assembly of polyoxo clusters and extended frameworks by controlled hydrolysis of low-valent uranium. Angew. Chem. Int. Ed. Engl. 2007, 46, 7574‒7578.
doi: 10.1002/anie.200702374
Boyen, H. G.; Kastle, G.; Weigl, F.; Koslowski, B.; Dietrich, C.; Ziemann, P.; Spatz, J. P.; Riethmuller, S.; Hartmann, C.; Moller, M.; Schmid, G.; Garnier, M. G.; Oelhafen, P. Oxidation-resistant gold-55 clusters. Science 2002, 297, 1533‒1536.
doi: 10.1126/science.1076248
Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981‒983.
doi: 10.1038/nature07194
Chang, C. M.; Cheng, C.; Wei, C. M. CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008, 128, 124710.
doi: 10.1063/1.2841364
Wilson, R. E.; De Sio, S.; Vallet, V. Protactinium and the intersection of actinide and transition metal chemistry. Nat. Commun. 2018, 9, 622.
doi: 10.1038/s41467-018-02972-z
Qiu, J.; Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 2013, 113, 1097‒1120.
doi: 10.1021/cr300159x
Knope, K. E.; Soderholm, L. Plutonium(Ⅳ) cluster with a hexanuclear [Pu6(OH)4O4]12+ core. Inorg. Chem. 2013, 52, 6770‒6772.
doi: 10.1021/ic4007185
Martin, N. P.; Volkringer, C.; Roussel, P.; Marz, J.; Hennig, C.; Loiseau, T.; Ikeda-Ohno, A. {Np38} clusters: the missing link in the largest poly-oxo cluster series of tetravalent actinides. Chem. Commun. 2018, 54, 10060‒10063.
doi: 10.1039/C8CC03744B
Qiu, J.; Vlaisavljevich, B.; Jouffret, L.; Nguyen, K.; Szymanowski, J. E.; Gagliardi, L.; Burns, P. C. Cation templating and electronic structure effects in uranyl cage clusters probed by the isolation of peroxide-bridged uranyl dimers. Inorg. Chem. 2015, 54, 4445‒4455.
doi: 10.1021/acs.inorgchem.5b00248
Hu, H. S.; Kaltsoyannis, N. High spin ground states in matryoshka actinide nanoclusters: a computational study. Chemistry 2018, 24, 347‒350.
doi: 10.1002/chem.201705196
Jiang, N.; Schwarz, W. H.; Li, J. Theoretical studies on hexanuclear oxometalates [M6L19]q- (M = Cr, Mo, W, Sg, Nd, U). Electronic structures, oxidation states, aromaticity, and stability. Inorg. Chem. 2015, 54, 7171‒7180.
doi: 10.1021/acs.inorgchem.5b00372
Kelley, M. P.; Su, J.; Urban, M.; Luckey, M.; Batista, E. R.; Yang, P.; Shafer, J. C. On the origin of covalent bonding in heavy actinides. J. Am. Chem. Soc. 2017, 139, 9901‒9908.
doi: 10.1021/jacs.7b03251
Pyykkö, P. Dirac-fock one-centre calculations part 8. The 1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Physica scripta 1979, 20, 647‒651.
doi: 10.1088/0031-8949/20/5-6/016
Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 2007, 28, 320‒325.
doi: 10.1002/jcc.20522
Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514‒17526.
doi: 10.1021/acs.jpcc.6b05338
Descalaux, J. P. Relativistic dirac-fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables. 1973, 12, 311‒406.
doi: 10.1016/0092-640X(73)90020-X
Li, J.; Bruce, E. B. Electronic structure of cycloheptatrienyl sandwich compounds of actinides: An(η7-C7H7)2 (An = Th, Pa, U, Np, Pu, Am) J. Am. Chem. Soc. 1997, 119, 9021‒9032.
doi: 10.1021/ja971149m
Su, J.; Windorff, C. J.; Batista, E. R.; Evans, W. J.; Gaunt, A. J.; Janicke, M. T.; Kozimor, S. A.; Scott, B. L.; Woen, D. H.; Yang, P. Identification of the formal +2 oxidation state of neptunium: synthesis and structural characterization of {Np(Ⅱ)[C5H3(SiMe3)2]3}. J. Am. Chem. Soc. 2018, 140, 7425‒7428.
doi: 10.1021/jacs.8b03907
Kelley, M. P.; Deblonde, G. J.; Su, J.; Booth, C. H.; Abergel, R. J.; Batista, E. R.; Yang, P. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3, 4, 3-LI(1, 2-HOPO). Inorg. Chem. 2018, 57, 5352‒5363.
doi: 10.1021/acs.inorgchem.8b00345
Hu, S. X.; Li, W. L.; Lu, J. B.; Bao, J. L.; Yu, H. S.; Truhlar, D. G.; Gibson, J. K.; Marcalo, J.; Zhou, M.; Riedel, S.; Schwarz, W. H. E.; Li, J. On the upper limits of oxidation states in chemistry. Angew. Chem. Int. Ed. Engl. 2018, 57, 3242‒3245.
doi: 10.1002/anie.201711450
Wang, G.; Zhou, M.; Goettel, J. T.; Schrobilgen, G. J.; Su, J.; Li, J.; Schloder, T.; Riedel, S. Identification of an iridium-containing compound with a formal oxidation state of Ⅸ. Nature 2014, 514, 475‒477.
doi: 10.1038/nature13795
Riedel, S.; Kaupp, M. The highest oxidation states of the transition metal elements. Coordin. Chem. Rev. 2009, 253, 606‒624.
doi: 10.1016/j.ccr.2008.07.014
Huang, W.; Xu, W. H.; Schwarz, W. H.; Li, J. On the highest oxidation states of metal elements in MO4 molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). Inorg. Chem. 2016, 55, 4616‒4625.
doi: 10.1021/acs.inorgchem.6b00442
Huang, W.; Pyykko, P.; Li, J. Is octavalent Pu(Ⅷ) possible? Mapping the plutonium oxyfluoride series PuOnF8-2n (n = 0-4). Inorg. Chem. 2015, 54, 8825‒8831.
doi: 10.1021/acs.inorgchem.5b01540
Huang, W.; Xu, W. H.; Su, J.; Schwarz, W. H.; Li, J. Oxidation states, geometries, and electronic structures of plutonium tetroxide PuO4 isomers: is octavalent Pu viable? Inorg. Chem. 2013, 52, 14237‒14245.
doi: 10.1021/ic402170q
Liu, J. B.; Chen, G. P.; Huang, W.; Clark, D. L.; Schwarz, W. H.; Li, J. Bonding trends across the series of tricarbonato-actinyl anions [(AnO2)(CO3)3]4- (An = U-Cm): the plutonium turn. Dalton Trans 2017, 46, 2542‒2550.
doi: 10.1039/C6DT03953G
Panak, P. J.; Geist, A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 2013, 113, 1199‒1236.
doi: 10.1021/cr3003399
Wang, Z.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L.; Chen, J.; Ding, S. Highly selective separation of actinides from lanthanides by dithiophosphinic acids: an in-depth investigation on extraction, complexation, and DFT calculations. Inorg. Chem. 2019, 58, 5457‒5467.
doi: 10.1021/acs.inorgchem.8b01635
Dau, P. D.; Su, J.; Liu, H. T.; Liu, J. B.; Huang, D. L.; Li, J.; Wang, L. S. Observation and investigation of the uranyl tetrafluoride dianion (UO2F42−) and its solvation complexes with water and acetonitrile. Chem. Sci. 2012, 3, 1137‒1146.
doi: 10.1039/c2sc01052f
Yang, X.; Chai, Z.; Wang, D. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(Ⅵ) hydroxide in aqueous solution. Phys. Chem. Chem. Phys. 2015, 17, 7537‒7547.
doi: 10.1039/C4CP04586F
Fanghänel, T.; Neck, V. Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl. Chem. 2002, 74, 13.
Wilson, R. E.; Skanthakumar, S.; Sigmon, G.; Burns, P. C.; Soderholm, L. Structures of dimeric hydrolysis products of thorium. Inorg. Chem. 2007, 46, 2368‒2372.
doi: 10.1021/ic0617691
Travia, N. E.; Scott, B. L.; Kiplinger, J. L. A rare tetranuclear thorium(Ⅳ) μ4-oxo cluster and dinuclear thorium(Ⅳ) complex assembled by carbon-oxygen bond activation of 1, 2-dimethoxyethane (DME). Chemistry 2014, 20, 16846‒16852.
doi: 10.1002/chem.201404551
Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4- and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem. Int. Ed. Engl. 2019, 58, 6022‒6027.
doi: 10.1002/anie.201901786
Knope, K. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(Ⅳ)-selenate clusters containing an octanuclear Th(Ⅳ) hydroxide/oxide core. Inorg. Chem. 2012, 51, 4239‒4249. s
doi: 10.1021/ic202706s
Falaise, C.; Kozma, K.; Nyman, M. Thorium oxo-clusters as building blocks for open frameworks. Chemistry 2018, 24, 14226‒14232.
doi: 10.1002/chem.201802671
Knope, K. E.; Soderholm, L. Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem. Rev. 2013, 113, 944‒994.
doi: 10.1021/cr300212f
Knope, K. E.; Wilson, R. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(Ⅳ) molecular clusters with a hexanuclear Th core. Inorg. Chem. 2011, 50, 9696‒9704.
doi: 10.1021/ic2014946
Diwu, J.; Wang, S.; Albrecht-Schmitt, T. E. Periodic trends in hexanuclear actinide clusters. Inorg. Chem. 2012, 51, 4088‒4093.
doi: 10.1021/ic2023242
Li, Y.; Yang, Z.; Wang, Y.; Bai, Z.; Zheng, T.; Dai, X.; Liu, S.; Gui, D.; Liu, W.; Chen, M.; Chen, L.; Diwu, J.; Zhu, L.; Zhou, R.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 2017, 8, 1354.
doi: 10.1038/s41467-017-01208-w
Galley, S. S.; Van Alstine, C. E.; Maron, L.; Albrecht-Schmitt, T. E. Understanding the scarcity of thorium peroxide clusters. Inorg. Chem. 2017, 56, 12692‒12694.
doi: 10.1021/acs.inorgchem.7b02216
Lin, J.; Yue, Z.; Silver, M. A.; Qie, M.; Wang, X.; Liu, W.; Lin, X.; Bao, H. L.; Zhang, L. J.; Wang, S.; Wang, J. Q. In situ reduction from uranyl ion into a tetravalent uranium trimer and hexamer featuring ion-exchange properties and the alexandrite effect. Inorg. Chem. 2018, 57, 6753‒6761.
doi: 10.1021/acs.inorgchem.8b01098
Falaise, C.; Volkringer, C.; Vigier, J. F.; Henry, N.; Beaurain, A.; Loiseau, T. Three-dimensional MOF-type architectures with tetravalent uranium hexanuclear motifs (U6O8). Chemistry 2013, 19, 5324‒5331.
doi: 10.1002/chem.201203914
Moisan, L.; Le Borgne, T.; Thuery, P.; Ephritikhine, M. An ion pair formed by protonated Fe(cp*py)2 and the octanuclear cluster U8Cl24O4(cp*py)2, cp*py is tetramethyl-5-(2-pyridyl)cyclopentadiene. Acta Crystallog. C 2002, 58, m98‒m101.
doi: 10.1107/S0108270101020029
Chatelain, L.; Faizova, R.; Fadaei-Tirani, F.; Pecaut, J.; Mazzanti, M. Structural snapshots of cluster growth from {U6} to {U38} during the hydrolysis of UCl4. Angew. Chem. Int. Ed. Engl. 2019, 58, 3021‒3026.
doi: 10.1002/anie.201812509
Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster Pu38O56Cl54(H2O)814-. Angew. Chem. Int. Ed. 2008, 47, 298‒302.
doi: 10.1002/anie.200704420
McGrail, B. T.; Sigmon, G. E.; Jouffret, L. J.; Andrews, C. R.; Burns, P. C. Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 2014, 53, 1562‒1569.
doi: 10.1021/ic402570b
magQiu, J.; Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 2013, 113, 1097‒120.
doi: 10.1021/cr300159x
Unruh, D. K.; Ling, J.; Qiu, J.; Pressprich, L.; Baranay, M.; Ward, M.; Burns, P. C. Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra. Inorg. Chem. 2011, 50, 5509‒5516.
doi: 10.1021/ic200065y
Miro, P.; Ling, J.; Qiu, J.; Burns, P. C.; Gagliardi, L.; Cramer, C. J. Experimental and computational study of a new wheel-shaped {[W5O21]3[(U(Ⅵ)O))2(μ-O2)]3}30- polyoxometalate. Inorg. Chem. 2012, 51, 8784‒8790.
doi: 10.1021/ic3005536
Pere, M.; Simon, P.; Mickael, G.; Adria, G.; Carles, B. On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc. 2010, 132, 17787‒17794.
doi: 10.1021/ja1053175
Miro, P.; Bo, C. Uranyl-peroxide nanocapsules: electronic structure and cation complexation in [(UO2)20(μ-O2)30]20-. Inorg. Chem. 2012, 51, 3840‒3845.
doi: 10.1021/ic300029d
Gil, A.; Karhanek, D.; Miro, P.; Antonio, M. R.; Nyman, M.; Bo, C. A journey inside the U28 nanocapsule. Chemistry 2012, 18, 8340‒8346.
doi: 10.1002/chem.201200801
Vlaisavljevich, B.; Miro, P.; Ma, D.; Sigmon, G. E.; Burns, P. C.; Cramer, C. J.; Gagliardi, L. Synthesis and characterization of the first 2D neptunyl structure stabilized by side-on cation-cation interactions. Chemistry 2013, 19, 2937‒2941.
doi: 10.1002/chem.201204149
Albrecht-Schmitt, T. E. Actinide materials adopt curvature: nanotubules and nanospheres. Angew. Chem. Int. Ed. 2005, 44, 4836‒4838.
doi: 10.1002/anie.200500936
Sigmon, G. E.; Ling, J.; Unruh, D. K.; Moore-Shay, L.; Ward, M.; Weaver, B.; Burns, P. C. Uranyl-peroxide interactions favor nanocluster self-assembly. J. Am. Chem. Soc. 2009, 131, 16648‒16649.
doi: 10.1021/ja907837u
Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like polyoxotitanium cage with high solution stability. J. Am. Chem. Soc. 2016, 138, 2556‒2559.
doi: 10.1021/jacs.6b00613
Vlaisavljevich, B.; Gagliardi, L.; Burns, P. C. Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. J. Am. Chem. Soc. 2010, 132, 14503‒14508.
doi: 10.1021/ja104964x
Martin, N. P.; Marz, J.; Feuchter, H.; Duval, S.; Roussel, P.; Henry, N.; Ikeda-Ohno, A.; Loiseau, T.; Volkringer, C. Synthesis and structural characterization of the first neptunium based metal-organic frameworks incorporating {Np6O8} hexanuclear clusters. Chem. Commun. 2018, 54, 6979‒6982.
doi: 10.1039/C8CC03121E
Burns, P. C.; Kubatko, K. A.; Sigmon, G.; Fryer, B. J.; Gagnon, J. E.; Antonio, M. R.; Soderholm, L. Actinyl peroxide nanospheres. Angew. Chem. Int. Ed. 2005, 44, 2135‒2139.
doi: 10.1002/anie.200462445
Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)8]14−. Angew. Chem. Int. Ed. 2008, 120, 304‒308.
doi: 10.1002/ange.200704420
Wilson, R. E.; Skanthakumar, S.; Soderholm, L. Separation of plutonium oxide nanoparticles and colloids. Angew. Chem. Int. Ed. 2011, 123, 11430‒11433.
doi: 10.1002/ange.201105624
Tamain, C.; Dumas, T.; Guillaumont, D.; Hennig, C.; Guilbaud, P. First evidence of a water-soluble plutonium(Ⅳ) hexanuclear cluster. Eur. J. Inorg. Chem. 2016, 2016, 3536‒3540.
Grant, D. J.; Weng, Z.; Jouffret, L. J.; Burns, P. C.; Gagliardi, L. Synthesis of a uranyl persulfide complex and quantum chemical studies of formation and topologies of hypothetical uranyl persulfide cage clusters. Inorg. Chem. 2012, 51, 7801‒7809.
doi: 10.1021/ic3008574
Sigmon, G. E.; Ling, J.; Unruh, D. K.; Moore-Shay, L.; Ward, M.; Weaver, B.; Burns, P. C. Uranyl peroxide interactions favor nanocluster self-assembly. Figshare 2009.
Cornet, S. M.; Haller, L. J.; Sarsfield, M. J.; Collison, D.; Helliwell, M.; May, I.; Kaltsoyannis, N. Neptunium(ⅵ) chain and neptunium(ⅵ/ⅴ) mixed valence cluster complexes. Chem. Commun. 2009, 917‒919.
Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D. C.; Duignan, T. J.; Autschbach, J.; Wang, S.; Wang, Y.; Velkos, G.; Popov, A. A.; Aghdassi, N.; Duhm, S.; Li, X.; Li, J. A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat. Commun. 2018, 9, 2753.
doi: 10.1038/s41467-018-05210-8
(a) Infante, I.; Gagliardi, L.; Scuseria, G. E. Is fullerene C60 large enough to host a multiply bonded dimetal? J. Am. Chem. Soc. 2008, 130, 7459‒7465.
(b) Wu, X.; Lu, X. Dimetalloendofullerene U2@C60 has a U-U multiple bond consisting of sixfold one-electron-two-center bonds. J. Am. Chem. Soc. 2017, 129, 2171‒2177.
Wu, R. H.; Guo, M.; Yu, M. X.; Zhu, L. G. Two titanium(ⅳ)-oxo-clusters: synthesis, structures, characterization and recycling catalytic activity in the oxygenation of sulfides. Dalton Trans 2017, 46, 14348‒14355.
doi: 10.1039/C7DT02516E
Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C. Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 2018, 4, 440‒450.
doi: 10.1021/acscentsci.8b00073
Yuan, S.; Qin, J. S.; Xu, H. Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H. L.; Son, D. H.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H. C. [Ti8Zr2O12(COO)16] cluster: An ideal inorganic building unit for photoactive metal-organic frameworks. ACS. Cent. Sci. 2018, 4, 105‒111.
doi: 10.1021/acscentsci.7b00497
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Xinghong Cai , Qiang Yang , Yao Tong , Lanyin Liu , Wutang Zhang , Sam Zhang , Min Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Ze-Yuan Ma , Mei Xiao , Cheng-Kun Li , Adedamola Shoberu , Jian-Ping Zou . S-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372