Citation: Han-Shi HU, Xiao-Cheng XU, Cong-Qiao XU, Jun LI. Recent Progresses in Experimental and Theoretical Studies of Actinide Clusters[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1201-1212. doi: 10.14102/j.cnki.0254–5861.2011–2929 shu

Recent Progresses in Experimental and Theoretical Studies of Actinide Clusters

  • Corresponding author: Han-Shi HU, hshu@mail.tsinghua.edu.cn
  • Received Date: 30 June 2020
    Accepted Date: 6 July 2020

    Fund Project: the Science Challenge Project TZ2016004the National Natural Science Foundation of China 21906094the National Natural Science Foundation of China 91645203the National Natural Science Foundation of China 21433005the National Natural Science Foundation of China 21590792Guangdong Provincial Key Laboratory of Catalysis 2020B121201002

Figures(7)

  • Actinide-containing cluster compounds are highly important in radio- and nuclear chemistry. Until three decades ago, little attention had been paid to these heavy-element clusters because of difficulties in their syntheses and characterization as well as handling of these radioactive and chemotoxic elements. In this overview article we have selectively summarized the recent progresses in experimental and theoretical studies on actinide clusters, including actinide (An = Th, Pa, U, Np and Pu) oxide clusters as well as uranyl (UO22+) peroxide clusters and so on. It shows that An(Ⅳ) (An = Th, U, Np and Pu) is able to form highly symmetric An6O8 core clusters and further merge into larger clusters up to An38O56 clusters (An = U, Np and Pu) with the same topology. Meanwhile, An with higher oxidation states such as U(Ⅵ) in uranyl is capable to form fullerene-like peroxide cage clusters of U20, U60 with the same topology as C20 and C60. Relativistic quantum chemistry investigations on the geometric structures, electronic structures and chemical bonding patterns have also been briefly summarized herein to provide an understanding on the structural chemistry of these peculiar clusters. The advances in electronic structure studies of actinide clusters help to develop robust theoretical and computational techniques for the future development of actinide cluster chemistry. Further experimental and computational studies of actinide clusters are needed and helpful to accelerate the development of radio- and nuclear chemistry.
  • 加载中
    1. [1]

      Bursten, B. E. P., E. J.; Sonnenberg, J. L. Recent advances in actinide chemistry; May, I., Alvares, R., Bryan, N., Eds.; Springer: Berlin 2006.

    2. [2]

      Morss, L. R. E., N. M.; Fuger, J.; Katz, J. J., Eds. The chemistry of the actinide and transactinide elements, 3rd ed.; Springer: Dordrecht. 2006.

    3. [3]

      Li, J.; Dai, X.; Zhu, L.; Xu, C.; Zhang, D.; Silver, M. A.; Li, P.; Chen, L.; Li, Y.; Zuo, D.; Zhang, H.; Xiao, C.; Chen, J.; Diwu, J.; Farha, O. K.; Albrecht-Schmitt, T. E.; Chai, Z.; Wang, S. 99TcO4- remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 3007.  doi: 10.1038/s41467-018-05380-5

    4. [4]

      Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Sheng, D.; Diwu, J.; Su, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 2015, 137, 6144‒6147.  doi: 10.1021/jacs.5b02480

    5. [5]

      Walther, C.; Denecke, M. A. Actinide colloids and particles of environmental concern. Chem. Rev. 2013, 113, 995‒1015.  doi: 10.1021/cr300343c

    6. [6]

      Shi, W. Q.; Yuan, L. Y.; Wang, C. Z.; Wang, L.; Mei, L.; Xiao, C. L.; Zhang, L.; Li, Z. J.; Zhao, Y. L.; Chai, Z. F. Exploring actinide materials throughsynchrotron radiation techniques. Adv. Mater. 2014, 26, 7807‒7848.  doi: 10.1002/adma.201304323

    7. [7]

      Wang, D.; van Gunsteren, W. F.; Chai, Z. Recent advances in computational actinoid chemistry. Chem. Soc. Rev. 2012, 41, 5836‒5865.  doi: 10.1039/c2cs15354h

    8. [8]

      Kaltsoyannis, N. Recent developments in computational actinide chemistry. Chem. Soc. Rev. 2003, 32, 9‒16.  doi: 10.1039/b204253n

    9. [9]

      Salmon, L.; Thuery, P.; Ephritikhine, M. Polynuclear uranium(Ⅳ) compounds with (μ3-oxo)U3 or (μ4-oxo)U4 cores and compartmental Schiff base ligands. Polyhedron 2006, 25, 1537‒1542.  doi: 10.1016/j.poly.2005.10.015

    10. [10]

      Biswas, B.; Mougel, V.; Pecaut, J.; Mazzanti, M. Base-driven assembly of large uranium oxo/hydroxo clusters. Angew. Chem. Int. Ed. Engl. 2011, 50, 5745‒5748.  doi: 10.1002/anie.201101327

    11. [11]

      Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. Engl. 2010, 49, 1736‒1758.  doi: 10.1002/anie.200902483

    12. [12]

      Nocton, G.; Burdet, F.; Pecaut, J.; Mazzanti, M. Self-assembly of polyoxo clusters and extended frameworks by controlled hydrolysis of low-valent uranium. Angew. Chem. Int. Ed. Engl. 2007, 46, 7574‒7578.  doi: 10.1002/anie.200702374

    13. [13]

      Boyen, H. G.; Kastle, G.; Weigl, F.; Koslowski, B.; Dietrich, C.; Ziemann, P.; Spatz, J. P.; Riethmuller, S.; Hartmann, C.; Moller, M.; Schmid, G.; Garnier, M. G.; Oelhafen, P. Oxidation-resistant gold-55 clusters. Science 2002, 297, 1533‒1536.  doi: 10.1126/science.1076248

    14. [14]

      Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981‒983.  doi: 10.1038/nature07194

    15. [15]

      Chang, C. M.; Cheng, C.; Wei, C. M. CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008, 128, 124710.  doi: 10.1063/1.2841364

    16. [16]

      Wilson, R. E.; De Sio, S.; Vallet, V. Protactinium and the intersection of actinide and transition metal chemistry. Nat. Commun. 2018, 9, 622.  doi: 10.1038/s41467-018-02972-z

    17. [17]

      Qiu, J.; Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 2013, 113, 1097‒1120.  doi: 10.1021/cr300159x

    18. [18]

      Knope, K. E.; Soderholm, L. Plutonium(Ⅳ) cluster with a hexanuclear [Pu6(OH)4O4]12+ core. Inorg. Chem. 2013, 52, 6770‒6772.  doi: 10.1021/ic4007185

    19. [19]

      Martin, N. P.; Volkringer, C.; Roussel, P.; Marz, J.; Hennig, C.; Loiseau, T.; Ikeda-Ohno, A. {Np38} clusters: the missing link in the largest poly-oxo cluster series of tetravalent actinides. Chem. Commun. 2018, 54, 10060‒10063.  doi: 10.1039/C8CC03744B

    20. [20]

      Qiu, J.; Vlaisavljevich, B.; Jouffret, L.; Nguyen, K.; Szymanowski, J. E.; Gagliardi, L.; Burns, P. C. Cation templating and electronic structure effects in uranyl cage clusters probed by the isolation of peroxide-bridged uranyl dimers. Inorg. Chem. 2015, 54, 4445‒4455.  doi: 10.1021/acs.inorgchem.5b00248

    21. [21]

      Hu, H. S.; Kaltsoyannis, N. High spin ground states in matryoshka actinide nanoclusters: a computational study. Chemistry 2018, 24, 347‒350.  doi: 10.1002/chem.201705196

    22. [22]

      Jiang, N.; Schwarz, W. H.; Li, J. Theoretical studies on hexanuclear oxometalates [M6L19]q- (M = Cr, Mo, W, Sg, Nd, U). Electronic structures, oxidation states, aromaticity, and stability. Inorg. Chem. 2015, 54, 7171‒7180.  doi: 10.1021/acs.inorgchem.5b00372

    23. [23]

      Kelley, M. P.; Su, J.; Urban, M.; Luckey, M.; Batista, E. R.; Yang, P.; Shafer, J. C. On the origin of covalent bonding in heavy actinides. J. Am. Chem. Soc. 2017, 139, 9901‒9908.  doi: 10.1021/jacs.7b03251

    24. [24]

      Pyykkö, P. Dirac-fock one-centre calculations part 8. The 1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Physica scripta 1979, 20, 647‒651.  doi: 10.1088/0031-8949/20/5-6/016

    25. [25]

      Kaupp, M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 2007, 28, 320‒325.  doi: 10.1002/jcc.20522

    26. [26]

      Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514‒17526.  doi: 10.1021/acs.jpcc.6b05338

    27. [27]

      Descalaux, J. P. Relativistic dirac-fock expectation values for atoms with Z = 1 to Z = 120. At. Data Nucl. Data Tables. 1973, 12, 311‒406.  doi: 10.1016/0092-640X(73)90020-X

    28. [28]

      Li, J.; Bruce, E. B. Electronic structure of cycloheptatrienyl sandwich compounds of actinides: An(η7-C7H7)2 (An = Th, Pa, U, Np, Pu, Am) J. Am. Chem. Soc. 1997, 119, 9021‒9032.  doi: 10.1021/ja971149m

    29. [29]

      Su, J.; Windorff, C. J.; Batista, E. R.; Evans, W. J.; Gaunt, A. J.; Janicke, M. T.; Kozimor, S. A.; Scott, B. L.; Woen, D. H.; Yang, P. Identification of the formal +2 oxidation state of neptunium: synthesis and structural characterization of {Np(Ⅱ)[C5H3(SiMe3)2]3}. J. Am. Chem. Soc. 2018, 140, 7425‒7428.  doi: 10.1021/jacs.8b03907

    30. [30]

      Kelley, M. P.; Deblonde, G. J.; Su, J.; Booth, C. H.; Abergel, R. J.; Batista, E. R.; Yang, P. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3, 4, 3-LI(1, 2-HOPO). Inorg. Chem. 2018, 57, 5352‒5363.  doi: 10.1021/acs.inorgchem.8b00345

    31. [31]

      Hu, S. X.; Li, W. L.; Lu, J. B.; Bao, J. L.; Yu, H. S.; Truhlar, D. G.; Gibson, J. K.; Marcalo, J.; Zhou, M.; Riedel, S.; Schwarz, W. H. E.; Li, J. On the upper limits of oxidation states in chemistry. Angew. Chem. Int. Ed. Engl. 2018, 57, 3242‒3245.  doi: 10.1002/anie.201711450

    32. [32]

      Wang, G.; Zhou, M.; Goettel, J. T.; Schrobilgen, G. J.; Su, J.; Li, J.; Schloder, T.; Riedel, S. Identification of an iridium-containing compound with a formal oxidation state of Ⅸ. Nature 2014, 514, 475‒477.  doi: 10.1038/nature13795

    33. [33]

      Riedel, S.; Kaupp, M. The highest oxidation states of the transition metal elements. Coordin. Chem. Rev. 2009, 253, 606‒624.  doi: 10.1016/j.ccr.2008.07.014

    34. [34]

      Huang, W.; Xu, W. H.; Schwarz, W. H.; Li, J. On the highest oxidation states of metal elements in MO4 molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). Inorg. Chem. 2016, 55, 4616‒4625.  doi: 10.1021/acs.inorgchem.6b00442

    35. [35]

      Huang, W.; Pyykko, P.; Li, J. Is octavalent Pu(Ⅷ) possible? Mapping the plutonium oxyfluoride series PuOnF8-2n (n = 0-4). Inorg. Chem. 2015, 54, 8825‒8831.  doi: 10.1021/acs.inorgchem.5b01540

    36. [36]

      Huang, W.; Xu, W. H.; Su, J.; Schwarz, W. H.; Li, J. Oxidation states, geometries, and electronic structures of plutonium tetroxide PuO4 isomers: is octavalent Pu viable? Inorg. Chem. 2013, 52, 14237‒14245.  doi: 10.1021/ic402170q

    37. [37]

      Liu, J. B.; Chen, G. P.; Huang, W.; Clark, D. L.; Schwarz, W. H.; Li, J. Bonding trends across the series of tricarbonato-actinyl anions [(AnO2)(CO3)3]4- (An = U-Cm): the plutonium turn. Dalton Trans 2017, 46, 2542‒2550.  doi: 10.1039/C6DT03953G

    38. [38]

      Panak, P. J.; Geist, A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 2013, 113, 1199‒1236.  doi: 10.1021/cr3003399

    39. [39]

      Wang, Z.; Pu, N.; Tian, Y.; Xu, C.; Wang, F.; Liu, Y.; Zhang, L.; Chen, J.; Ding, S. Highly selective separation of actinides from lanthanides by dithiophosphinic acids: an in-depth investigation on extraction, complexation, and DFT calculations. Inorg. Chem. 2019, 58, 5457‒5467.  doi: 10.1021/acs.inorgchem.8b01635

    40. [40]

      Dau, P. D.; Su, J.; Liu, H. T.; Liu, J. B.; Huang, D. L.; Li, J.; Wang, L. S. Observation and investigation of the uranyl tetrafluoride dianion (UO2F42−) and its solvation complexes with water and acetonitrile. Chem. Sci. 2012, 3, 1137‒1146.  doi: 10.1039/c2sc01052f

    41. [41]

      Yang, X.; Chai, Z.; Wang, D. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(Ⅵ) hydroxide in aqueous solution. Phys. Chem. Chem. Phys. 2015, 17, 7537‒7547.  doi: 10.1039/C4CP04586F

    42. [42]

      Fanghänel, T.; Neck, V. Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl. Chem. 2002, 74, 13.

    43. [43]

      Wilson, R. E.; Skanthakumar, S.; Sigmon, G.; Burns, P. C.; Soderholm, L. Structures of dimeric hydrolysis products of thorium. Inorg. Chem. 2007, 46, 2368‒2372.  doi: 10.1021/ic0617691

    44. [44]

      Travia, N. E.; Scott, B. L.; Kiplinger, J. L. A rare tetranuclear thorium(Ⅳ) μ4-oxo cluster and dinuclear thorium(Ⅳ) complex assembled by carbon-oxygen bond activation of 1, 2-dimethoxyethane (DME). Chemistry 2014, 20, 16846‒16852.  doi: 10.1002/chem.201404551

    45. [45]

      Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4- and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem. Int. Ed. Engl. 2019, 58, 6022‒6027.  doi: 10.1002/anie.201901786

    46. [46]

      Knope, K. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(Ⅳ)-selenate clusters containing an octanuclear Th(Ⅳ) hydroxide/oxide core. Inorg. Chem. 2012, 51, 4239‒4249. s  doi: 10.1021/ic202706s

    47. [47]

      Falaise, C.; Kozma, K.; Nyman, M. Thorium oxo-clusters as building blocks for open frameworks. Chemistry 2018, 24, 14226‒14232.  doi: 10.1002/chem.201802671

    48. [48]

      Knope, K. E.; Soderholm, L. Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem. Rev. 2013, 113, 944‒994.  doi: 10.1021/cr300212f

    49. [49]

      Knope, K. E.; Wilson, R. E.; Vasiliu, M.; Dixon, D. A.; Soderholm, L. Thorium(Ⅳ) molecular clusters with a hexanuclear Th core. Inorg. Chem. 2011, 50, 9696‒9704.  doi: 10.1021/ic2014946

    50. [50]

      Diwu, J.; Wang, S.; Albrecht-Schmitt, T. E. Periodic trends in hexanuclear actinide clusters. Inorg. Chem. 2012, 51, 4088‒4093.  doi: 10.1021/ic2023242

    51. [51]

      Li, Y.; Yang, Z.; Wang, Y.; Bai, Z.; Zheng, T.; Dai, X.; Liu, S.; Gui, D.; Liu, W.; Chen, M.; Chen, L.; Diwu, J.; Zhu, L.; Zhou, R.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 2017, 8, 1354.  doi: 10.1038/s41467-017-01208-w

    52. [52]

      Galley, S. S.; Van Alstine, C. E.; Maron, L.; Albrecht-Schmitt, T. E. Understanding the scarcity of thorium peroxide clusters. Inorg. Chem. 2017, 56, 12692‒12694.  doi: 10.1021/acs.inorgchem.7b02216

    53. [53]

      Lin, J.; Yue, Z.; Silver, M. A.; Qie, M.; Wang, X.; Liu, W.; Lin, X.; Bao, H. L.; Zhang, L. J.; Wang, S.; Wang, J. Q. In situ reduction from uranyl ion into a tetravalent uranium trimer and hexamer featuring ion-exchange properties and the alexandrite effect. Inorg. Chem. 2018, 57, 6753‒6761.  doi: 10.1021/acs.inorgchem.8b01098

    54. [54]

      Falaise, C.; Volkringer, C.; Vigier, J. F.; Henry, N.; Beaurain, A.; Loiseau, T. Three-dimensional MOF-type architectures with tetravalent uranium hexanuclear motifs (U6O8). Chemistry 2013, 19, 5324‒5331.  doi: 10.1002/chem.201203914

    55. [55]

      Moisan, L.; Le Borgne, T.; Thuery, P.; Ephritikhine, M. An ion pair formed by protonated Fe(cp*py)2 and the octanuclear cluster U8Cl24O4(cp*py)2, cp*py is tetramethyl-5-(2-pyridyl)cyclopentadiene. Acta Crystallog. C 2002, 58, m98‒m101.  doi: 10.1107/S0108270101020029

    56. [56]

      Chatelain, L.; Faizova, R.; Fadaei-Tirani, F.; Pecaut, J.; Mazzanti, M. Structural snapshots of cluster growth from {U6} to {U38} during the hydrolysis of UCl4. Angew. Chem. Int. Ed. Engl. 2019, 58, 3021‒3026.  doi: 10.1002/anie.201812509

    57. [57]

      Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster Pu38O56Cl54(H2O)814-. Angew. Chem. Int. Ed. 2008, 47, 298‒302.  doi: 10.1002/anie.200704420

    58. [58]

      McGrail, B. T.; Sigmon, G. E.; Jouffret, L. J.; Andrews, C. R.; Burns, P. C. Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 2014, 53, 1562‒1569.  doi: 10.1021/ic402570b

    59. [59]

      magQiu, J.; Burns, P. C. Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 2013, 113, 1097‒120.  doi: 10.1021/cr300159x

    60. [60]

      Unruh, D. K.; Ling, J.; Qiu, J.; Pressprich, L.; Baranay, M.; Ward, M.; Burns, P. C. Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra. Inorg. Chem. 2011, 50, 5509‒5516.  doi: 10.1021/ic200065y

    61. [61]

      Miro, P.; Ling, J.; Qiu, J.; Burns, P. C.; Gagliardi, L.; Cramer, C. J. Experimental and computational study of a new wheel-shaped {[W5O21]3[(U(Ⅵ)O))2(μ-O2)]3}30- polyoxometalate. Inorg. Chem. 2012, 51, 8784‒8790.  doi: 10.1021/ic3005536

    62. [62]

      Pere, M.; Simon, P.; Mickael, G.; Adria, G.; Carles, B. On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc. 2010, 132, 17787‒17794.  doi: 10.1021/ja1053175

    63. [63]

      Miro, P.; Bo, C. Uranyl-peroxide nanocapsules: electronic structure and cation complexation in [(UO2)20(μ-O2)30]20-. Inorg. Chem. 2012, 51, 3840‒3845.  doi: 10.1021/ic300029d

    64. [64]

      Gil, A.; Karhanek, D.; Miro, P.; Antonio, M. R.; Nyman, M.; Bo, C. A journey inside the U28 nanocapsule. Chemistry 2012, 18, 8340‒8346.  doi: 10.1002/chem.201200801

    65. [65]

      Vlaisavljevich, B.; Miro, P.; Ma, D.; Sigmon, G. E.; Burns, P. C.; Cramer, C. J.; Gagliardi, L. Synthesis and characterization of the first 2D neptunyl structure stabilized by side-on cation-cation interactions. Chemistry 2013, 19, 2937‒2941.  doi: 10.1002/chem.201204149

    66. [66]

      Albrecht-Schmitt, T. E. Actinide materials adopt curvature: nanotubules and nanospheres. Angew. Chem. Int. Ed. 2005, 44, 4836‒4838.  doi: 10.1002/anie.200500936

    67. [67]

      Sigmon, G. E.; Ling, J.; Unruh, D. K.; Moore-Shay, L.; Ward, M.; Weaver, B.; Burns, P. C. Uranyl-peroxide interactions favor nanocluster self-assembly. J. Am. Chem. Soc. 2009, 131, 16648‒16649.  doi: 10.1021/ja907837u

    68. [68]

      Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like polyoxotitanium cage with high solution stability. J. Am. Chem. Soc. 2016, 138, 2556‒2559.  doi: 10.1021/jacs.6b00613

    69. [69]

      Vlaisavljevich, B.; Gagliardi, L.; Burns, P. C. Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. J. Am. Chem. Soc. 2010, 132, 14503‒14508.  doi: 10.1021/ja104964x

    70. [70]

      Martin, N. P.; Marz, J.; Feuchter, H.; Duval, S.; Roussel, P.; Henry, N.; Ikeda-Ohno, A.; Loiseau, T.; Volkringer, C. Synthesis and structural characterization of the first neptunium based metal-organic frameworks incorporating {Np6O8} hexanuclear clusters. Chem. Commun. 2018, 54, 6979‒6982.  doi: 10.1039/C8CC03121E

    71. [71]

      Burns, P. C.; Kubatko, K. A.; Sigmon, G.; Fryer, B. J.; Gagnon, J. E.; Antonio, M. R.; Soderholm, L. Actinyl peroxide nanospheres. Angew. Chem. Int. Ed. 2005, 44, 2135‒2139.  doi: 10.1002/anie.200462445

    72. [72]

      Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)8]14−. Angew. Chem. Int. Ed. 2008, 120, 304‒308.  doi: 10.1002/ange.200704420

    73. [73]

      Wilson, R. E.; Skanthakumar, S.; Soderholm, L. Separation of plutonium oxide nanoparticles and colloids. Angew. Chem. Int. Ed. 2011, 123, 11430‒11433.  doi: 10.1002/ange.201105624

    74. [74]

      Tamain, C.; Dumas, T.; Guillaumont, D.; Hennig, C.; Guilbaud, P. First evidence of a water-soluble plutonium(Ⅳ) hexanuclear cluster. Eur. J. Inorg. Chem. 2016, 2016, 3536‒3540.

    75. [75]

      Grant, D. J.; Weng, Z.; Jouffret, L. J.; Burns, P. C.; Gagliardi, L. Synthesis of a uranyl persulfide complex and quantum chemical studies of formation and topologies of hypothetical uranyl persulfide cage clusters. Inorg. Chem. 2012, 51, 7801‒7809.  doi: 10.1021/ic3008574

    76. [76]

      Sigmon, G. E.; Ling, J.; Unruh, D. K.; Moore-Shay, L.; Ward, M.; Weaver, B.; Burns, P. C. Uranyl peroxide interactions favor nanocluster self-assembly. Figshare 2009.

    77. [77]

      Cornet, S. M.; Haller, L. J.; Sarsfield, M. J.; Collison, D.; Helliwell, M.; May, I.; Kaltsoyannis, N. Neptunium(ⅵ) chain and neptunium(ⅵ/ⅴ) mixed valence cluster complexes. Chem. Commun. 2009, 917‒919.

    78. [78]

      Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D. C.; Duignan, T. J.; Autschbach, J.; Wang, S.; Wang, Y.; Velkos, G.; Popov, A. A.; Aghdassi, N.; Duhm, S.; Li, X.; Li, J. A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat. Commun. 2018, 9, 2753.  doi: 10.1038/s41467-018-05210-8

    79. [79]

      (a) Infante, I.; Gagliardi, L.; Scuseria, G. E. Is fullerene C60 large enough to host a multiply bonded dimetal? J. Am. Chem. Soc. 2008, 130, 7459‒7465.
      (b) Wu, X.; Lu, X. Dimetalloendofullerene U2@C60 has a U-U multiple bond consisting of sixfold one-electron-two-center bonds. J. Am. Chem. Soc. 2017, 129, 2171‒2177.

    80. [80]

      Wu, R. H.; Guo, M.; Yu, M. X.; Zhu, L. G. Two titanium(ⅳ)-oxo-clusters: synthesis, structures, characterization and recycling catalytic activity in the oxygenation of sulfides. Dalton Trans 2017, 46, 14348‒14355.  doi: 10.1039/C7DT02516E

    81. [81]

      Yuan, S.; Qin, J. S.; Lollar, C. T.; Zhou, H. C. Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 2018, 4, 440‒450.  doi: 10.1021/acscentsci.8b00073

    82. [82]

      Yuan, S.; Qin, J. S.; Xu, H. Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H. L.; Son, D. H.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H. C. [Ti8Zr2O12(COO)16] cluster: An ideal inorganic building unit for photoactive metal-organic frameworks. ACS. Cent. Sci. 2018, 4, 105‒111.  doi: 10.1021/acscentsci.7b00497

  • 加载中
    1. [1]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    2. [2]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    3. [3]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    6. [6]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    7. [7]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    8. [8]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    9. [9]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    10. [10]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    11. [11]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    12. [12]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    13. [13]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    16. [16]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    17. [17]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    18. [18]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    19. [19]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(12)
  • Abstract views(513)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return