Citation: Zong-Jie GUAN, Quan-Ming WANG. Ligand Engineering in Metal Nanoclusters: from Structural Control to Functional Modulation[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1194-1200. doi: 10.14102/j.cnki.0254–5861.2011–2928 shu

Ligand Engineering in Metal Nanoclusters: from Structural Control to Functional Modulation

  • Corresponding author: Quan-Ming WANG, qmwang@tsinghua.edu.cn
  • Received Date: 28 June 2020
    Accepted Date: 5 July 2020

    Fund Project: the National Natural Science Foundation of China 91961201the National Natural Science Foundation of China 21631007the National Natural Science Foundation of China 21971136

Figures(6)

  • Ligand-protected metal nanoclusters have drawn increasing research interest because of their unique physicochemical properties and practical applications. Great efforts have been made in pursuing rational synthesis of metal nanoclusters and establishing the structure-property relationships. As an indispensable part of ligand-protected metal nanoclusters, ligands play multiple roles in determining their structures and properties. In this perspective, we demonstrate the importance of ligand engineering in terms of the control of structures, optical and catalytic properties of metal nanoclusters. Furthermore, we will show that ligand engineering is prospective in structural design and preorganization of surface metal sites.
  • 加载中
    1. [1]

      Daniel, M. C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.  doi: 10.1021/cr030698+

    2. [2]

      Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.  doi: 10.1021/acs.chemrev.5b00703

    3. [3]

      Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.  doi: 10.1021/acs.chemrev.6b00769

    4. [4]

      Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.  doi: 10.1021/acs.chemrev.8b00726

    5. [5]

      Zeng, C. J.; Chen, Y. X.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 2016, 138, 3950–3953.  doi: 10.1021/jacs.5b12747

    6. [6]

      Yuan, P.; Zhang, R.; Selenius, E.; Ruan, P.; Yao, Y.; Zhou, Y.; Malola, S.; Hakkinen, H.; Teo, B. K.; Cao, Y.; Zheng, N. Solvent-mediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials. Nat. Commun. 2020, 11, 2229.  doi: 10.1038/s41467-020-16062-6

    7. [7]

      Wan, X. K.; Yuan, S. F.; Tang, Q.; Jiang, D. E.; Wang, Q. M. Alkynyl-protected Au23 nanocluster: a 12-electron system. Angew. Chem. Int. Ed. 2015, 54, 5977–5980.  doi: 10.1002/anie.201500590

    8. [8]

      Wan, X. K.; Xu, W. W.; Yuan, S. F.; Gao, Y.; Zeng, X. C.; Wang, Q. M. A near-infrared-emissive alkynyl-protected Au24 nanocluster. Angew. Chem. Int. Ed. 2015, 54, 9683–9686.  doi: 10.1002/anie.201503893

    9. [9]

      Guan, Z. J.; Hu, F.; Li, J. J.; Wen, Z. R.; Lin, Y. M.; Wang, Q. M. Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 2020, 142, 2995–3001.  doi: 10.1021/jacs.9b11836

    10. [10]

      Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.  doi: 10.1021/ja103592z

    11. [11]

      Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667.  doi: 10.1038/ncomms9667

    12. [12]

      Zhuang, S. L.; Liao, L. W.; Zhao, Y.; Yuan, J. Y.; Yao, C. H.; Liu, X.; Li, J.; Deng, H. T.; Yang, J. L.; Wu, Z. K. Is the kernel-staples match a key-lock match? Chem. Sci. 2018, 9, 2437–2442.  doi: 10.1039/C7SC05019D

    13. [13]

      Zhuang, S. L.; Liao, L. W.; Yuan, J. Y.; Xia, N.; Zhao, Y.; Wang, C. M.; Gan, Z. B.; Yan, N.; He, L. Z.; Li, J.; Deng, H. T.; Guan, Z. Y.; Yang, J. L.; Wu, Z. K. Fcc versus non-fcc structural isomerism of gold nanoparticles with kernel atom packing dependent photoluminescence. Angew. Chem. Int. Ed. 2019, 58, 4510–4514.  doi: 10.1002/anie.201813426

    14. [14]

      Xia, N.; Yuan, J. Y.; Liao, L. W.; Zhang, W. H.; Li, J.; Deng, H. T.; Yang, J. L.; Wu, Z. K. Structural oscillation revealed in gold nanoparticles. J. Am. Chem. Soc. 2020, doi: 10.1021/jacs.0c02117.  doi: 10.1021/jacs.0c02117

    15. [15]

      Salorinne, K.; Malola, S.; Wong, O. A.; Rithner, C. D.; Chen, X.; Ackerson, C. J.; Hakkinen, H. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle. Nat. Commun. 2016, 7, 10401.  doi: 10.1038/ncomms10401

    16. [16]

      Wang, J. Q.; Guan, Z. J.; Liu, W. D.; Yang, Y.; Wang, Q. M. Chiroptical activity enhancement via structural control: the chiral synthesis and reversible interconversion of two intrinsically chiral gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 2384–2390.  doi: 10.1021/jacs.8b11096

    17. [17]

      McPartlin, M.; Mason, R.; Malatesta, L. Novel cluster complexes of gold(0)–gold(Ⅰ). J. Chem. Soc. D: Chem. Commun. 1969, 334–334.

    18. [18]

      Hall, K. P.; Mingos, D. M. P. Homo-and heteronuclear cluster compounds of gold. Prog. Inorg. Chem. 1984, 32, 237–325.

    19. [19]

      Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.  doi: 10.1039/B9NR00160C

    20. [20]

      Sakthivel, N. A.; Dass, A. Aromatic thiolate-protected series of gold nanomolecules and a contrary structural trend in size evolution. Acc. Chem. Res. 2018, 51, 1774–1783.  doi: 10.1021/acs.accounts.8b00150

    21. [21]

      Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.  doi: 10.1021/acs.accounts.8b00065

    22. [22]

      Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.  doi: 10.1021/acs.accounts.8b00359

    23. [23]

      Guan, Z. J.; Zeng, J. L.; Nan, Z. A.; Wan, X. K.; Lin, Y. M.; Wang, Q. M. Thiacalix[4]arene: new protection for metal nanoclusters. Sci. Adv. 2016, 2, e1600323.  doi: 10.1126/sciadv.1600323

    24. [24]

      Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: the dipyridylamido Au328+ nanocluster. Angew. Chem. Int. Ed. 2019, 58, 5906–5909.  doi: 10.1002/anie.201901478

    25. [25]

      Wan, X. K.; Guan, Z. J.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters: Au44(PhC≡C)28 and Au36(PhC≡C)24. Angew. Chem. Int. Ed. 2017, 56, 11494–11497.  doi: 10.1002/anie.201706021

    26. [26]

      Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118.  doi: 10.1002/anie.201207098

    27. [27]

      Zeng, C. J.; Chen, Y. X.; Li, G.; Jin, R. C. Synthesis of a Au44(SR)28 nanocluster: structure prediction and evolution from Au28(SR)20, Au36(SR)24 to Au44(SR)28. Chem. Commun. 2014, 50, 55–57.  doi: 10.1039/C3CC47089J

    28. [28]

      Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang, Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem. Int. Ed. 2018, 57, 8639–8643.  doi: 10.1002/anie.201804481

    29. [29]

      Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci. Adv. 2018, 4, eaat7259.  doi: 10.1126/sciadv.aat7259

    30. [30]

      Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: alkynyl-protected Au25 with D3 symmetry. Angew. Chem. Int. Ed. 2019, 58, 1083–1087.  doi: 10.1002/anie.201811859

    31. [31]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.  doi: 10.1021/ja801173r

    32. [32]

      Guan, Z. J.; Hu, F.; Li, J. J.; Liu, Z.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters with unusual compositions and structures. Nanoscale 2020, doi: 10.1039/D0NR02986F.  doi: 10.1039/D0NR02986F

    33. [33]

      Krommenhoek, P. J.; Wang, J.; Hentz, N.; Johnston-Peck, A. C.; Kozek, K. A.; Kalyuzhny, G.; Tracy, J. B. Bulky adamantanethiolate and cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. ACS Nano 2012, 6, 4903–4911.  doi: 10.1021/nn3003778

    34. [34]

      Chen, Y. X.; Zeng, C. J.; Kauffman, D. R.; Jin, R. C. Tuning the magic size of atomically precise gold nanoclusters via isomeric methylbenzenethiols. Nano Lett. 2015, 15, 3603–3609.  doi: 10.1021/acs.nanolett.5b01122

    35. [35]

      Nishigaki, J. I.; Tsunoyama, R.; Tsunoyama, H.; Ichikuni, N.; Yamazoe, S.; Negishi, Y.; Ito, M.; Matsuo, T.; Tamao, K.; Tsukuda, T. A new binding motif of sterically demanding thiolates on a gold cluster. J. Am. Chem. Soc. 2012, 134, 14295–14297.  doi: 10.1021/ja305477a

    36. [36]

      Zeng, C. J.; Liu, C. Y.; Pei, Y.; Jin, R. C. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 2013, 7, 6138–6145.  doi: 10.1021/nn401971g

    37. [37]

      Guan, Z. J.; Hu, F.; Yuan, S. F.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. The stability enhancement factor beyond eight-electron shell closure in thiacalix[4]arene-protected silver clusters. Chem. Sci. 2019, 10, 3360–3365.  doi: 10.1039/C8SC03756F

    38. [38]

      Yuan, S. F.; Guan, Z. J.; Liu, W. D.; Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 2019, 10, 4032.  doi: 10.1038/s41467-019-11988-y

    39. [39]

      Tatsuya Tsukuda, H. H. K. Protected metal clusters: from fundamentals to applications. Elsevier 2015.

    40. [40]

      Han, X. S.; Luan, X.; Su, H. F.; Li, J. J.; Yuan, S. F.; Lei, Z.; Pei, Y.; Wang, Q. M. Structure determination of alkynyl-protected gold nanocluster Au22(tBuC≡C)18 and its thermochromic luminescence. Angew. Chem. Int. Ed. 2020, 59, 2309–2312.  doi: 10.1002/anie.201912984

    41. [41]

      Das, A.; Liu, C.; Zeng, C. J.; Li, G.; Li, T.; Rosi, N. L.; Jin, R. C. Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. J. Phys. Chem. A 2014, 118, 8264–8269.

    42. [42]

      Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.  doi: 10.1021/acsnano.6b03964

    43. [43]

      Yuan, X.; Goswami, N.; Chen, W. L.; Yao, Q. F.; Xie, J. P. Insights into the effect of surface ligands on the optical properties of thiolated Au25 nanoclusters. Chem. Commun. 2016, 52, 5234–5237.  doi: 10.1039/C6CC00857G

    44. [44]

      Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.  doi: 10.1021/nl101225f

    45. [45]

      Kim, A.; Zeng, C. J.; Zhou, M.; Jin, R. C. Surface engineering of Au36(SR)24 nanoclusters for photoluminescence enhancement. Part. Part. Syst. Charact. 2017, 34, 1600388.  doi: 10.1002/ppsc.201600388

    46. [46]

      Ito, S.; Takano, S.; Tsukuda, T. Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 2019, 10, 6892–6896.  doi: 10.1021/acs.jpclett.9b02920

    47. [47]

      Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Hakkinen, H.; Teo, B. K.; Wang, Q. M.; Zheng, N. F. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.  doi: 10.1021/jacs.5b12730

    48. [48]

      Zhao, J. B.; Li, Q.; Zhuang, S. L.; Song, Y. B.; Morris, D. J.; Zhou, M.; Wu, Z. K.; Zhang, P.; Jin, R. C. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 2018, 9, 7173–7179.  doi: 10.1021/acs.jpclett.8b02784

    49. [49]

      Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.  doi: 10.1126/sciadv.1701823

  • 加载中
    1. [1]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    2. [2]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    3. [3]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    4. [4]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    5. [5]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    8. [8]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    9. [9]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    10. [10]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    18. [18]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    19. [19]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    20. [20]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

Metrics
  • PDF Downloads(12)
  • Abstract views(558)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return