-
[1]
Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297−303.
doi: 10.1126/science.aaz8881
-
[2]
Li, B.; Wen, H.; Zhou, W.; Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468−3479.
doi: 10.1021/jz501586e
-
[3]
Zhu, L.; Liu, X.; Jiang, H.; Sun, L. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129−8176.
doi: 10.1021/acs.chemrev.7b00091
-
[4]
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105−1125.
doi: 10.1021/cr200324t
-
[5]
Jing, T.; Chen, L.; Jiang, F.; Yang, Y.; Zhou, K.; Yu, M.; Cao, Z.; Li, S.; Hong, M. Fabrication of a robust lanthanide metal-organic framework as a multifunctional material for Fe(III) detection, CO2 capture, and utilization. Cryst. Growth Des. 2018, 18, 2956−2963.
doi: 10.1021/acs.cgd.8b00068
-
[6]
Yao, Q.; Fan, Y.; Wang, Z.; Duan, W.; Wang, S.; Li, Y.; Li, D.; Zhang, Q.; Duan, Y.; Dou, J. Coexistence of self- and interpenetration in two (3, 6)-connected porous coordination polymers. CrystEngComm. 2016, 18, 8574−8577.
doi: 10.1039/C6CE01705C
-
[7]
Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513−6519.
doi: 10.1021/ie202325p
-
[8]
Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater. 2003, 58, 105−114.
doi: 10.1016/S1387-1811(02)00609-1
-
[9]
Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc. 2007, 129, 14176−14177.
doi: 10.1021/ja076877g
-
[10]
Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575−10612.
doi: 10.1021/cr5002589
-
[11]
Wang, C.; Liu, X.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic framewroks. Chem. Soc. Rev. 2016, 45, 5107−5134.
doi: 10.1039/C6CS00362A
-
[12]
Duan, J.; Jin, W.; Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Soc. Rev. 2017, 332, 48−74.
doi: 10.1016/j.ccr.2016.11.004
-
[13]
Xue, D.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 2013, 135, 7660−7667.
doi: 10.1021/ja401429x
-
[14]
Li, J.; Ren, Y.; Qi, C.; Jiang, H. A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Trans. 2017, 46, 7821−7832.
doi: 10.1039/C7DT01116D
-
[15]
Yao, Q.; Lu, X.; Liu, K.; Ma, C.; Su, J.; Lin, C.; Li, D.; Dou, J.; Sun, J.; Duan, W. An NHC-CuCl functionalized metal-organic framework for catalyzing β-boration of α, β-unsaturated carbonyl compounds. Dalton Trans. 2019, 48, 5144−5148.
doi: 10.1039/C9DT00645A
-
[16]
Li, W.; Yao, Q.; Sun, L.; Yang, X.; Guo, R.; Zhang, J. A viologen-based coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm. 2017, 19, 722−726.
doi: 10.1039/C6CE02496C
-
[17]
Yen, H. J.; Liou, G. S. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers. J. Mater. Chem. 2010, 20, 9886−9894 and references therein.
-
[18]
Dong, L.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W.; Lan, Y. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew. Chem. Int. Ed. 2020, 59, 2659−2663.
doi: 10.1002/anie.201913284
-
[19]
He, Y.; Tan, Y.; Zhang, J. Functional metal-organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coord. Chem. Rev. 2020, 420, 213354−20.
doi: 10.1016/j.ccr.2020.213354
-
[20]
Wu, P.; Wang, J.; Li, Y.; He, C.; Xie, Z.; Duan, C. Luminescent sensing and catalytic performances of a multifunctional lanthanide-organic framework comprising a triphenylamine moiety. Adv. Funct. Mater. 2011, 21, 2788−2794.
doi: 10.1002/adfm.201100115
-
[21]
Wu, P.; Wang, J.; He, C.; Zhang, X.; Wang, Y.; Liu, T.; Duan, C. Luminescent metal-organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv. Funct. Mater. 2012, 22, 1698−1703.
doi: 10.1002/adfm.201102157
-
[22]
Yao, Q.; Gómez, A. B.; Su, J.; Pascanu, V.; Yun, Y.; Zheng, H.; Chen, H.; Liu, L.; Abdelhamid, H. N.; Martín-Matute, B.; Zou, X. Series of highly stable isoreticular lanthanide metal-organic frameworks with expanding pore size and tunable luminescent properties. Chem. Mater. 2015, 27, 5332−5339.
doi: 10.1021/acs.chemmater.5b01711
-
[23]
Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. A permanently porous single molecule H-bonded organic framework for selective CO2 capture. Chem. Commun. 2016, 52, 7249−7252.
doi: 10.1039/C6CC02964G
-
[24]
Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.
-
[25]
Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.
-
[26]
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7.
doi: 10.1107/S0021889802022112
-
[27]
Duan, J.; Higuchi, M.; Krishna, R.; Kiyonaga, T.; Tsutsumi, Y.; Sato, Y.; Kubota, Y.; Takkata, M.; Kitagawa, S. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 2014, 5, 660−666.
doi: 10.1039/C3SC52177J
-
[28]
Zhong, R.; Yu, X.; Zou, R. A highly thermal stable microporous lanthanide-organic framework for CO2 sorption and separation. Inorg. Chem. Commun. 2015, 61, 173−3176.
doi: 10.1016/j.inoche.2015.09.019
-
[29]
Wang, Z.; Tan, C.; Ren, X.; Mao, Y.; Yao, Q.; Li, D.; Dou, J. Syntheses, crystal structures and luminescent properties of two lanthanide coordination polymers based on bifunctional ligand. Chin. J. Struct. Chem. 2016, 35, 1980−1986.
-
[30]
Gao, F.; Li, Y.; Ye, Y.; Zhao, L. A robust microporous ytterbium metal-organic framework with open metal sites for highly selective adsorption of CO2 over CH4. Inorg. Chem. Commun. 2017, 86, 137−139.
doi: 10.1016/j.inoche.2017.10.010
-
[31]
Yang, H.; Li, J. R. Metal-organic frameworks (MOFs) for CO2 capture. In: Lu, A. H.; Dai, S. (eds). Porous materials for carbon dioxide capture. Green chemistry and sustainable technology. Springer, Berlin, Heidelberg 2014.
-
[32]
Purewal, J. J.; Liu, D.; Yang, J.; Sudik, A.; Siegel, D. J.; Maurer, S.; Müller, U. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrogen Energy 2012, 37, 2723−2727.
doi: 10.1016/j.ijhydene.2011.03.002
-
[33]
Duan, J.; Higuchi, M.; Horike, S.; Foo, M. L.; Rao, K. P.; Inubushi, Y.; Fukushima, T.; Kitagawa, S. Methane separation: high CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv. Funct. Mater. 2013, 23, 3525−3530.
doi: 10.1002/adfm.201203288
-
[34]
Xue, D.; Belmabkhout, Y.; Shekhah, O.; Jiang, H.; Adil, K.; Cairns, A. J.; Eddaoudi, M. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 2015, 137, 5034−5040.
doi: 10.1021/ja5131403
-
[35]
Yang, Y.; Jiang, F.; Chen, L.; Pang, J.; Wu, M.; Wan, X.; Pan, J.; Qian, J. Hong, M. An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions and with remarkable selectivities for CO2-N2 and CO2-CH4. J. Mater. Chem. A 2015, 3, 13526−13532.
doi: 10.1039/C5TA00720H