Citation: Qing-Xia YAO, Miao-Miao TIAN, Yao WANG, Yu-Jie MENG, Jun WANG, Qing-Yuan YAO, Xin ZHOU, Hua YANG, Huai-Wei WANG, Yun-Wu LI, Jie ZHANG. A Robust, Water-stable, and Multifunctional Praseodymium-organic Framework Showing Permanent Porosity, CO2 Adsorption Properties, and Selective Sensing of Fe3+ Ion[J]. Chinese Journal of Structural Chemistry, ;2020, 39(10): 1862-1870. doi: 10.14102/j.cnki.0254–5861.2011–2926 shu

A Robust, Water-stable, and Multifunctional Praseodymium-organic Framework Showing Permanent Porosity, CO2 Adsorption Properties, and Selective Sensing of Fe3+ Ion

  • Corresponding author: Qing-Xia YAO, yaoqxlcu@163.com Jie ZHANG, Zhangjie68@bit.edu.cn
  • Received Date: 29 June 2020
    Accepted Date: 10 August 2020

    Fund Project: the National Natural Science Foundation of China 21501086the National Natural Science Foundation of China 21701978the National Natural Science Foundation of China 21801108the Shandong Provincial Natural Science Foundation ZR2014BQ035the Youth Innovation Team of Shandong Colleges and Universities 2019KJC027Yao Q. thanks the financial supports from Liaocheng University 318051401

Figures(8)

  • A robust microporous praseodymium-organic framework, {[Pr3(NTB)3(H2O)3]·(DMF)3(H2O)4}n (Pr-NTB, 1), was solvothermally synthesized based on 4, 4΄, 4΄΄-nitrilotribenzoic acid (H3NTB) and fully characterized. Single-crystal X-ray diffraction analysis reveals compound 1 possesses a three-dimensional porous coordination network, in which discrete cages are connected through microporous windows. 1 shows extraordinary thermal and water stability; in particular, it is stable in aqueous media from pH = 3 to 11, which is outstanding in benzyl-carboxylate based MOFs. Furthermore, 1 exhibits permanent porosity with the BET surface area of 156.2 m2·g-1 and can adsorb suitable CO2 (1.14 mmol·g-1 at 273 K/1 bar) with isosteric heat of adsorption (Qst) of 28.5 kJ·mol-1. These features suggest that the porous material 1 is a good candidate for CO2 capture in real-world application. Notably, the integration of fluorescent property, porosity and water stability in 1 promises it as a selective fluorescent sensor for Fe3+ cation in water.
  • 加载中
    1. [1]

      Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297−303.  doi: 10.1126/science.aaz8881

    2. [2]

      Li, B.; Wen, H.; Zhou, W.; Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468−3479.  doi: 10.1021/jz501586e

    3. [3]

      Zhu, L.; Liu, X.; Jiang, H.; Sun, L. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129−8176.  doi: 10.1021/acs.chemrev.7b00091

    4. [4]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105−1125.  doi: 10.1021/cr200324t

    5. [5]

      Jing, T.; Chen, L.; Jiang, F.; Yang, Y.; Zhou, K.; Yu, M.; Cao, Z.; Li, S.; Hong, M. Fabrication of a robust lanthanide metal-organic framework as a multifunctional material for Fe(III) detection, CO2 capture, and utilization. Cryst. Growth Des. 2018, 18, 2956−2963.  doi: 10.1021/acs.cgd.8b00068

    6. [6]

      Yao, Q.; Fan, Y.; Wang, Z.; Duan, W.; Wang, S.; Li, Y.; Li, D.; Zhang, Q.; Duan, Y.; Dou, J. Coexistence of self- and interpenetration in two (3, 6)-connected porous coordination polymers. CrystEngComm. 2016, 18, 8574−8577.  doi: 10.1039/C6CE01705C

    7. [7]

      Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513−6519.  doi: 10.1021/ie202325p

    8. [8]

      Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater. 2003, 58, 105−114.  doi: 10.1016/S1387-1811(02)00609-1

    9. [9]

      Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1, 4-benzenedicarboxylate)3(MOF-5). J. Am. Chem. Soc. 2007, 129, 14176−14177.  doi: 10.1021/ja076877g

    10. [10]

      Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575−10612.  doi: 10.1021/cr5002589

    11. [11]

      Wang, C.; Liu, X.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal-organic framewroks. Chem. Soc. Rev. 2016, 45, 5107−5134.  doi: 10.1039/C6CS00362A

    12. [12]

      Duan, J.; Jin, W.; Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Soc. Rev. 2017, 332, 48−74.  doi: 10.1016/j.ccr.2016.11.004

    13. [13]

      Xue, D.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 2013, 135, 7660−7667.  doi: 10.1021/ja401429x

    14. [14]

      Li, J.; Ren, Y.; Qi, C.; Jiang, H. A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Trans. 2017, 46, 7821−7832.  doi: 10.1039/C7DT01116D

    15. [15]

      Yao, Q.; Lu, X.; Liu, K.; Ma, C.; Su, J.; Lin, C.; Li, D.; Dou, J.; Sun, J.; Duan, W. An NHC-CuCl functionalized metal-organic framework for catalyzing β-boration of α, β-unsaturated carbonyl compounds. Dalton Trans. 2019, 48, 5144−5148.  doi: 10.1039/C9DT00645A

    16. [16]

      Li, W.; Yao, Q.; Sun, L.; Yang, X.; Guo, R.; Zhang, J. A viologen-based coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm. 2017, 19, 722−726.  doi: 10.1039/C6CE02496C

    17. [17]

      Yen, H. J.; Liou, G. S. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers. J. Mater. Chem. 2010, 20, 9886−9894 and references therein.

    18. [18]

      Dong, L.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W.; Lan, Y. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew. Chem. Int. Ed. 2020, 59, 2659−2663.  doi: 10.1002/anie.201913284

    19. [19]

      He, Y.; Tan, Y.; Zhang, J. Functional metal-organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coord. Chem. Rev. 2020, 420, 213354−20.  doi: 10.1016/j.ccr.2020.213354

    20. [20]

      Wu, P.; Wang, J.; Li, Y.; He, C.; Xie, Z.; Duan, C. Luminescent sensing and catalytic performances of a multifunctional lanthanide-organic framework comprising a triphenylamine moiety. Adv. Funct. Mater. 2011, 21, 2788−2794.  doi: 10.1002/adfm.201100115

    21. [21]

      Wu, P.; Wang, J.; He, C.; Zhang, X.; Wang, Y.; Liu, T.; Duan, C. Luminescent metal-organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv. Funct. Mater. 2012, 22, 1698−1703.  doi: 10.1002/adfm.201102157

    22. [22]

      Yao, Q.; Gómez, A. B.; Su, J.; Pascanu, V.; Yun, Y.; Zheng, H.; Chen, H.; Liu, L.; Abdelhamid, H. N.; Martín-Matute, B.; Zou, X. Series of highly stable isoreticular lanthanide metal-organic frameworks with expanding pore size and tunable luminescent properties. Chem. Mater. 2015, 27, 5332−5339.  doi: 10.1021/acs.chemmater.5b01711

    23. [23]

      Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. A permanently porous single molecule H-bonded organic framework for selective CO2 capture. Chem. Commun. 2016, 52, 7249−7252.  doi: 10.1039/C6CC02964G

    24. [24]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    25. [25]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

    26. [26]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7.  doi: 10.1107/S0021889802022112

    27. [27]

      Duan, J.; Higuchi, M.; Krishna, R.; Kiyonaga, T.; Tsutsumi, Y.; Sato, Y.; Kubota, Y.; Takkata, M.; Kitagawa, S. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 2014, 5, 660−666.  doi: 10.1039/C3SC52177J

    28. [28]

      Zhong, R.; Yu, X.; Zou, R. A highly thermal stable microporous lanthanide-organic framework for CO2 sorption and separation. Inorg. Chem. Commun. 2015, 61, 173−3176.  doi: 10.1016/j.inoche.2015.09.019

    29. [29]

      Wang, Z.; Tan, C.; Ren, X.; Mao, Y.; Yao, Q.; Li, D.; Dou, J. Syntheses, crystal structures and luminescent properties of two lanthanide coordination polymers based on bifunctional ligand. Chin. J. Struct. Chem. 2016, 35, 1980−1986.

    30. [30]

      Gao, F.; Li, Y.; Ye, Y.; Zhao, L. A robust microporous ytterbium metal-organic framework with open metal sites for highly selective adsorption of CO2 over CH4. Inorg. Chem. Commun. 2017, 86, 137−139.  doi: 10.1016/j.inoche.2017.10.010

    31. [31]

      Yang, H.; Li, J. R. Metal-organic frameworks (MOFs) for CO2 capture. In: Lu, A. H.; Dai, S. (eds). Porous materials for carbon dioxide capture. Green chemistry and sustainable technology. Springer, Berlin, Heidelberg 2014.

    32. [32]

      Purewal, J. J.; Liu, D.; Yang, J.; Sudik, A.; Siegel, D. J.; Maurer, S.; Müller, U. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrogen Energy 2012, 37, 2723−2727.  doi: 10.1016/j.ijhydene.2011.03.002

    33. [33]

      Duan, J.; Higuchi, M.; Horike, S.; Foo, M. L.; Rao, K. P.; Inubushi, Y.; Fukushima, T.; Kitagawa, S. Methane separation: high CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv. Funct. Mater. 2013, 23, 3525−3530.  doi: 10.1002/adfm.201203288

    34. [34]

      Xue, D.; Belmabkhout, Y.; Shekhah, O.; Jiang, H.; Adil, K.; Cairns, A. J.; Eddaoudi, M. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 2015, 137, 5034−5040.  doi: 10.1021/ja5131403

    35. [35]

      Yang, Y.; Jiang, F.; Chen, L.; Pang, J.; Wu, M.; Wan, X.; Pan, J.; Qian, J. Hong, M. An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions and with remarkable selectivities for CO2-N2 and CO2-CH4. J. Mater. Chem. A 2015, 3, 13526−13532.  doi: 10.1039/C5TA00720H

  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    10. [10]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    15. [15]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

Metrics
  • PDF Downloads(1)
  • Abstract views(333)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return