Citation: Si ZHOU, Yan-Yan ZHAO, Ji-Jun ZHAO. Cage Clusters: from Structure Prediction to Rational Design of Functional Nanomaterials[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1185-1193. doi: 10.14102/j.cnki.0254–5861.2011–2922 shu

Cage Clusters: from Structure Prediction to Rational Design of Functional Nanomaterials

  • Corresponding author: Ji-Jun ZHAO, zhaojj@dlut.edu.cn
  • Received Date: 28 June 2020
    Accepted Date: 5 July 2020

    Fund Project: the National Natural Science Foundation of China 91961204the National Natural Science Foundation of China 11974068the Fundamental Research Funds for the Central Universities of China DUT20LAB110the Fundamental Research Funds for the Central Universities of China DUT20LAB203

Figures(6)

  • Atomic clusters of subnanometer scale and variable chemical composition offer great opportunities for rational design of functional nanomaterials. Among them, cage clusters doped with endohedral atom are particularly interesting owing to their enhanced stability and highly tunable physical and chemical properties. In this perspective, first we give a brief overview of the history of doped cage clusters and introduce the home-developed comprehensive genetic algorithm (CGA) for structure prediction of clusters. Then, we show a few examples of magnetic clusters and subnanometer catalysts based on doped cage clusters, which are computationally revealed or designed by the CGA code. Finally, we give an outlook for some future directions of cluster science.
  • 加载中
    1. [1]

      Gong, X. G.; Kumar, V. Enhanced stability of magic clusters: a case study of icosahedral Al12X, X = B, Al, Ga, C, Si, Ge, Ti, As. Phys. Rev. Lett. 1993, 70, 2078–2081.  doi: 10.1103/PhysRevLett.70.2078

    2. [2]

      de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676.  doi: 10.1103/RevModPhys.65.611

    3. [3]

      Langmuir, I. Types of valence. Science, New Series 1921, 54, 59–67.

    4. [4]

      Pyykkö, P.; Runeberg, N. Icosahedral WAu12: a predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule. Angew. Chem. 2002, 114, 2278–2280.  doi: 10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F

    5. [5]

      Li, X.; Kiran, B.; Li, J.; Zhai, H. J.; Wang, L. S. Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem. Int. Ed. 2002, 41, 4786–4789.  doi: 10.1002/anie.200290048

    6. [6]

      Heath, J. R.; O'Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Tittel, F. K.; Smalley, R. E. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 1985, 107, 7779–7780.  doi: 10.1021/ja00311a102

    7. [7]

      Kumar, V.; Kawazoe, Y. Metal-encapsulated fullerenelike and cubic caged clusters of silicon. Phys. Rev. Lett. 2001, 87, 045503(1–4).

    8. [8]

      Kumar, V.; Kawazoe, Y. Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon. Phys. Rev. Lett. 2002, 88, 235504(1–4).

    9. [9]

      Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. Selective formation of MSi16 (M = Sc, Ti, and V). J. Am. Chem. Soc. 2005, 127, 4998–4999.  doi: 10.1021/ja045380t

    10. [10]

      Lau, J. T.; Hirsch, K.; Klar, P.; Langenberg, A.; Lofink, F.; Richter, R.; Rittmann, J.; Vogel, M.; Zamudio-Bayer, V.; Möller. T. X-ray spectroscopy reveals high symmetry and electronic shell structure of transition-metal-doped silicon clusters. Phys. Rev. A 2009, 79, 053201(1–5).

    11. [11]

      Furuse, S.; Koyasu, K.; Atobe, J.; Nakajima, A. Experimental and theoretical characterization of MSi16, MGe16, MSn16, and MPb16 (M = Ti, Zr, and Hf): the role of cage aromaticity. J. Chem. Phys. 2008, 129, 064311(1–6).

    12. [12]

      Tsunoyama, H.; Akatsuka, H.; Shibuta, M.; Iwasa, T.; Mizuhata, Y.; Tokitoh, N.; Nakajima, A. Development of integrated dry-wet synthesis method for metal encapsulating silicon cage superatoms of M@Si16 (M = Ti and Ta). J. Phys. Chem. C 2017, 121, 20507–20516.  doi: 10.1021/acs.jpcc.7b06449

    13. [13]

      Zhao, J. J.; Du, Q. Y; Zhou, S.; Kumar, V. Endohedrally doped cage clusters. Chem. Rev. DOI: 10.1021/acs.chemrev.9b00651.  doi: 10.1021/acs.chemrev.9b00651

    14. [14]

      Huang, X. M.; Xu, H. G.; Lu, S. J.; Su, Y.; King, R. B.; Zhao, J. J.; Zheng, W. J. Discovery of a silicon-based ferrimagnetic wheel structure in VxSi12 (x = 1~3) clusters: photoelectron spectroscopy and density functional theory investigation. Nanoscale 2014, 6, 4617–14621.

    15. [15]

      Huang, X. M.; Lu, S. J.; Liang, X. Q.; Su, Y.; Sai, L. W.; Zhang, Z. G.; Zhao, J. J.; Xu, H. G.; Zheng, W. J. Structures and electronic properties of V3Sin (n = 3~14) clusters: a combined ab initio and experimental study. J. Phys. Chem. C 2015, 119, 10987–10994.  doi: 10.1021/jp5112845

    16. [16]

      Wu, X.; Zhou, S.; Huang, X. M.; Chen, M. D.; Bruce King, R.; Zhao, J. J. Revisit of large-gap Si16 clusters encapsulating group-Ⅳ metal atoms (Ti, Zr, Hf). J. Comput. Chem. 2018, 39, 2268–2272.  doi: 10.1002/jcc.25545

    17. [17]

      Zhou, S.; Yang, X. W.; Pei, W.; Zhao, J. J.; Du, A. J. Silicon nanocages for selective carbon dioxide conversion under visible light. J. Phys. Chem. C 2019, 123, 9973–9980.  doi: 10.1021/acs.jpcc.9b01784

    18. [18]

      Liang, X. Q.; Deng, X. J.; Lu, S. J.; Huang, X. M.; Zhao, J. J.; Xu, H. G.; Zheng, W. J.; Zeng, X. C. Probing structural, electronic, and magnetic properties of iron-doped semiconductor clusters Fe2Gen–/0 (n = 3~12) via joint photoelectron spectroscopy and density functional study. J. Phys. Chem. C 2017, 121, 7037–7046.  doi: 10.1021/acs.jpcc.7b00943

    19. [19]

      Liang, X. Q.; Kong, X. Y.; Lu, S. J.; Huang, Y. Y.; Zhao, J. J.; Xu, H. G.; Zheng, W. J.; Zeng, X. C. Structural evolution and magnetic properties of anionic clusters Cr2Gen (n = 3~14): photoelectron spectroscopy and density functional theory computation. J. Phys. : Condens. Matter 2018, 30, 335501(1–11).

    20. [20]

      Zhou, S.; Yang, X. W.; Shen, Y. B.; King, R. B.; Zhao, J. J. Dual transition metal doped germanium clusters for catalysis of CO oxidation. J. Alloy. Compd. 2019, 806, 698–704.  doi: 10.1016/j.jallcom.2019.07.297

    21. [21]

      Du, Q. Y.; Wu, X.; Wang, P. J.; Wu, D.; Sai, L. W.; King, R. B.; Park, S. J.; Zhao, J. J. Structure evolution of transition metal-doped gold clusters M@Au12 (M = 3d~5d): across the periodic table. J. Phys. Chem. C 2020, 124, 7449–7457.  doi: 10.1021/acs.jpcc.9b11588

    22. [22]

      Zhou, S.; Pei, W.; Du, Q. Y.; Zhao, J. J. Foreign atom encapsulated Au12 golden cages for catalysis of CO oxidation. Phys. Chem. Chem. Phys. 2019, 21, 10587–10593.  doi: 10.1039/C9CP01517E

    23. [23]

      Zhao, J. J.; Shi, R. L.; Sai, L. W.; Huang, X. M.; Su, Y. Comprehensive genetic algorithm for ab initioglobal optimisation of clusters. Mol. Simulat. 2016, 42, 809–819.  doi: 10.1080/08927022.2015.1121386

    24. [24]

      Goldberg, D. E. Genetic algorithms in search. optimization, and machineLearning. Addison-Wesley 1989.

    25. [25]

      Deaven, D. M.; Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 1995, 75, 288–291.  doi: 10.1103/PhysRevLett.75.288

    26. [26]

      Luo, Y. H.; Zhao, J. J.; Qiu, S. T.; Wang, G. H. Genetic-algorithm prediction of the magic-number structure of (C60)N clusters with a first-principles interaction potential. Phys. Rev. B 1999, 59, 14903–14906.  doi: 10.1103/PhysRevB.59.14903

    27. [27]

      Zhao, J. J.; Xie, R. H. Genetic algorithms for the geometry optimization of atomic and molecular clusters. J. Comput. Theor. Nanosci. 2004, 1, 117–131.  doi: 10.1166/jctn.2004.010

    28. [28]

      Wang, B. L.; Yin, S. Y.; Wang, G. H.; Buldum, A.; Zhao, J. J. Novel structures and properties of gold nanowires. Phys. Rev. Lett. 2001, 86, 2046–2049.  doi: 10.1103/PhysRevLett.86.2046

    29. [29]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.  doi: 10.1103/PhysRevB.54.11169

    30. [30]

      Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.  doi: 10.1063/1.1316015

    31. [31]

      Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19.  doi: 10.1006/jcph.1995.1039

    32. [32]

      Sai, L. W.; Wu, X.; Gao, N.; Zhao, J. J.; King, R. B. Boron clusters with 46, 48, and 50 atoms: competition among the core-shell, bilayer and quasi-planar structures. Nanoscale 2017, 9, 13905–13909.  doi: 10.1039/C7NR02399E

    33. [33]

      Huang, X. M.; Sai, L. W.; Jiang, X.; Zhao, J. J. Ground state structures, electronic and optical properties of medium-sized Nan+ (n = 9, 15, 21, 26, 31, 36, 41, 50 and 59) clusters from ab initio genetic algorithm. Eur. Phys. J. D 2013, 67, 1–7.  doi: 10.1140/epjd/e2012-30692-0

    34. [34]

      Sai, L. W.; Tang, L. L.; Huang, X. M.; Chen, G. B.; Zhao, J. J.; Wang, J. Lowest-energy structures of (WO3)n (2≤n≤12) clusters from first-principles global search. Chem. Phys. Lett. 2012, 544, 7–12.  doi: 10.1016/j.cplett.2012.06.050

    35. [35]

      Zhao, J. J.; Huang, X. M.; Jin, P.; Chen, Z. F. Magnetic properties of atomic clusters and endohedral metallofullerenes. Coordin. Chem. Rev. 2015, 289–290, 315–340.

    36. [36]

      Kumar, V.; Kawazoe, Y. Metal-doped magic clusters of Si, Ge, and Sn: the finding of a magnetic superatom. Appl. Phys. Lett. 2003, 83, 2677–2679.  doi: 10.1063/1.1609661

    37. [37]

      Ma, L.; Zhao, J. J.; Wang, J. G.; Wang, B. L.; Lu, Q. L.; Wang, G. H. Growth behavior and magnetic properties of SinFe (n = 2~14) clusters. Phys. Rev. B 2006, 73, 125439(1–8).

    38. [38]

      Kong, X. Y.; Xu, H. G.; Zheng, W. J. Structures and magnetic properties of CrSin (n = 3~12) clusters: photoelectron spectroscopy and density functional calculations. J. Chem. Phys. 2012, 137, 064307(1–9).

    39. [39]

      Wang, J. G.; Ma, L.; Zhao, J. J.; Wang, G. H. Structural growth sequences and electronic properties of manganese-doped germanium clusters: MnGen (2~15). J. Phys. : Condens. Matter 2008, 20, 335223(1–8).

    40. [40]

      Claes, P.; Janssens, E.; Ngan, V. T.; Gruene, P.; Lyon, J. T.; Harding, D. J.; Fielicke, A.; Nguyen, M. T.; Lievens, P. Structural identification of caged vanadium doped silicon clusters. Phys. Rev. Lett. 2011, 107, 173401(1–4).

    41. [41]

      Zhou, S.; Yang, X. W.; Xu, X.; Dou, S. X.; Du, Y.; Zhao, J. J. Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. J. Am. Chem. Soc. 2020, 142, 308–317.  doi: 10.1021/jacs.9b10588

    42. [42]

      Zhao, Y. Y.; Liu, N. S.; Zhou, S.; Zhao, J. J. Two-dimensional ZnO for the selective photoreduction of CO2. J. Mater. Chem. A 2019, 7, 16294–16303.  doi: 10.1039/C9TA04477A

    43. [43]

      Zhou, S.; Yang, X. W.; Pei, W.; Liu, N. S.; Zhao, J. J. Heterostructures of mxenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 2018, 10, 10876–10883.  doi: 10.1039/C8NR01090K

    44. [44]

      Tong, Q. C.; Xue, L. T.; Lv, J.; Wang, Y. C.; Ma, Y. M. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss. 2018, 211, 31–43.  doi: 10.1039/C8FD00055G

    45. [45]

      Yin, B. Q.; Du, Q. Y.; Geng, L. J.; Zhang, H. Y.; Luo, Z. X.; Zhou, S.; Zhao, J. J. Anionic copper clusters reacting with NO: an open-shell superatom Cu18. J. Phys. Chem. Lett. 2020, DOI: 10.1021/acs.jpclett.0c01643.  doi: 10.1021/acs.jpclett.0c01643

    46. [46]

      Yang, D.; Pei, W.; Zhou, S.; Zhao, J. J.; Ding, W. P.; Zhu, Y. Controllable conversion of CO2 on non-metallic gold clusters. Angew. Chem. Int. Ed. 2020, 59, 1919–1924.  doi: 10.1002/anie.201913635

    47. [47]

      Sun, Y. N.; Pei, W.; Xie, M. C.; Xu, S.; Zhou, S.; Zhao, J. J.; Xiao, K.; Zhu, Y. Excitonic Au4Ru2(PPh3)2(SC2H4Ph)8 cluster for light-driven dinitrogen fixation. Chem. Sci. 2020, 11, 2440–2447.  doi: 10.1039/C9SC06424A

  • 加载中
    1. [1]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    2. [2]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    7. [7]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    8. [8]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    9. [9]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    10. [10]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    11. [11]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    15. [15]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    16. [16]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    17. [17]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    18. [18]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    19. [19]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    20. [20]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

Metrics
  • PDF Downloads(1)
  • Abstract views(388)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return