Citation: Xue-Ting WANG, Wei WEI, Kai ZHANG, Shao-Wu DU. Detection of Diethyl Ether by a Europium MOF through Fluorescence Enhancement[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 369-375. doi: 10.14102/j.cnki.0254–5861.2011–2917 shu

Detection of Diethyl Ether by a Europium MOF through Fluorescence Enhancement

  • Corresponding author: Shao-Wu DU, swdu@fjirsm.ac.cn
  • Received Date: 23 June 2020
    Accepted Date: 1 September 2020

    Fund Project: the National Natural Science Foundation of China 21972060

Figures(8)

  • A new water-stable europium MOF, (Me2NH2)[Eu(abtc)(phen)]·2H2O (1), has been synthesized from Eu(NO3)3·6H2O with 1, 10-phenanthroline (phen) and 3, 3′, 5, 5′-azobenzenetetracarboxylic acid (H4abtc) ligands under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction analysis, IR, TGA and PXRD. It crystallizes in monoclinic system, C2/c space group, with a = 16.278(3), b = 14.261(3), c = 27.936(5) Å, β = 103.464(3)°, V = 6307(2) Å3, Z = 8, C30H26EuN5O10, Mr = 768.5, Dc = 1.543 g/cm3, F(000) = 2912, μ(MoKa) = 2.044 mm‒1, R = 0.0315 and wR = 0.0663. In the structure of 1, the EuO7N2 polyhedra are assembled into a 2D layer with rhombic windows and these layers are further condensed to form a 3D framework. It can be used as selective and sensitive fluorescence sensors capable of detecting diethyl ether vapor.
  • 加载中
    1. [1]

      Yi, F. Y.; Yang, W.; Sun, Z. M. Highly selective acetone fluorescent sensors based on microporous Cd(II) metal-organic frameworks. J. Mater. Chem. 2012, 22, 23201−23209.  doi: 10.1039/c2jm35273g

    2. [2]

      Zhao, S. S.; Yang, J.; Liu, Y. Y.; Ma, J. F. Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules. Inorg. Chem. 2016, 55, 2261−2273.  doi: 10.1021/acs.inorgchem.5b02666

    3. [3]

      Ruta, J.; Perrier, S.; Ravelet, C.; Fize, J.; Peyrin, E. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal. Chem. 2009, 81, 7468−7473.  doi: 10.1021/ac9014512

    4. [4]

      Hao, J. N.; Yan, B.; Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor. Adv. Funct. Mater. 2017, 27, 1603856−1603863.  doi: 10.1002/adfm.201603856

    5. [5]

      Chen, D. M.; Tian, J. Y.; Chen, M.; Liu, C. S.; Du, M. Moisture-stable Zn(II) metal-organic framework as a multifunctional platform for highly efficient CO2 capture and nitro pollutant vapor detection. ACS Appl. Mater. Interfaces 2016, 8, 18043−18050.  doi: 10.1021/acsami.6b04611

    6. [6]

      Qin, J.; Ma, B.; Liu, X. F.; Lu, H. L.; Dong, X. Y.; Zang, S. Q.; Hou, H. Aqueous- and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid. J. Mater. Chem. A 2015, 3, 12690−12697.  doi: 10.1039/C5TA00322A

    7. [7]

      Shen, X.; Yan, B. A novel fluorescence probe for sensing organic amine vapors from a Eu3+ β-diketonate functionalized bio-MOF-1 hybrid system. J. Mater. Chem. C 2015, 3, 7038−7044.  doi: 10.1039/C5TC01287B

    8. [8]

      Wang, J. H.; Li, M.; Li, D. A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. Chem. Sci. 2013, 4, 1793−1801.  doi: 10.1039/c3sc00016h

    9. [9]

      Zhan, C.; Ou, S.; Zou, C.; Zhao, M.; Wu, C. D. A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules. Anal. Chem. 2014, 86, 6648−6653.  doi: 10.1021/ac5013442

    10. [10]

      Li, R.; Yuan, Y. P.; Qiu, L. G.; Zhang, W.; Zhu, J. F. A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives. Small 2012, 8, 225−230.  doi: 10.1002/smll.201101699

    11. [11]

      Chen, D. M.; Zhang, N. N.; Liu, C. S.; Du, M. Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. J. Mater. Chem. C 2017, 5, 2311−2317.  doi: 10.1039/C6TC05349A

    12. [12]

      Pan, Y.; Su, H. Q.; Zhou, E. L.; Yin, H. Z.; Shao, K. Z.; Su, Z. M. A stable mixed lanthanide metal-organic framework for highly sensitive thermometry. Dalton Trans. 2019, 48, 3723−3729.  doi: 10.1039/C9DT00217K

    13. [13]

      Chen, Z.; Sun, Y.; Zhang, L.; Sun, D.; Liu, F.; Meng, Q.; Wang, R.; Sun, D. A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. Chem. Commun. 2013, 49, 11557−11559.  doi: 10.1039/c3cc46613b

    14. [14]

      Wu, Y. P.; Xu, G. W.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J.; Bu, X. Anionic lanthanide MOFs as a platform for iron-selective sensing, systematic color tuning, and efficient nanoparticle catalysis. Inorg. Chem. 2017, 56, 1402−1411.  doi: 10.1021/acs.inorgchem.6b02476

    15. [15]

      Zhou, X. H.; Li, L.; Li, H. H.; Li, A.; Yang, T.; Huang, W. A flexible Eu(III)-based metal-organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. Dalton Trans. 2013, 42, 12403−12409.  doi: 10.1039/c3dt51081f

    16. [16]

      Li, H.; Han, Y.; Shao, Z.; Li, N.; Huang, C.; Hou, H. Water-stable Eu-MOF fluorescent sensors for trivalent metal ions and nitrobenzene. Dalton Trans. 2017, 46, 12201−12208.  doi: 10.1039/C7DT02590D

    17. [17]

      Zhang, Q.; Lei, M.; Yan, H.; Wang, J.; Shi, Y. A water-stable 3D luminescent metal-organic framework based on heterometallic [Eu6IIIZnII] clusters showing highly sensitive, selective, and reversible detection of ronidazole. Inorg. Chem. 2017, 56, 7610−7614.  doi: 10.1021/acs.inorgchem.7b01156

    18. [18]

      Xu, W.; Chen, H.; Xia, Z.; Ren, C.; Han, J.; Sun, W.; Wei, Q.; Xie, G.; Chen, S. A robust TbIII-MOF for ultrasensitive detection of trinitrophenol: matched channel dimensions and strong host-guest interactions. Inorg. Chem. 2019, 58, 8198−8207.  doi: 10.1021/acs.inorgchem.9b01008

    19. [19]

      Yang, Y.; Chen, L.; Jiang, F.; Wan, X.; Yu, M.; Cao, Z.; Jing, T.; Hong, M. Fabricating a super stable luminescent chemosensor with multi-stimuli-response to metal ions and small organic molecules by turn-on and turn-off effects. J. Mater. Chem. C 2017, 5, 4511−4519.  doi: 10.1039/C7TC00508C

    20. [20]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Gӧttingen, Germany 1997.

    21. [21]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C: Struct. Chem. 2015, 71, 3−8.  doi: 10.1107/S2053229614024218

    22. [22]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7−13.  doi: 10.1107/S0021889802022112

    23. [23]

      Xu, S.; Shi, J. J.; Ding, B.; Liu, Z. Y.; Wang, X. G.; Zhao, X. J.; Yang, E. C. A heterometallic sodium(I)-europium(III)-organic layer exhibiting dual-responsive luminescent sensing for nitrofuran antibiotics, Cr2O72- and MnO4- anions. Dalton Trans. 2019, 48, 1823−1834.  doi: 10.1039/C8DT04208J

    24. [24]

      Castells-Gil, J.; Baldoví, J. J.; Martí-Gastaldo, C.; Espallargas, G. M. Implementation of slow magnetic relaxation in a SIM-MOF through a structural rearrangement. Dalton Trans. 2018, 41, 14734−14740.

    25. [25]

      Du, P. Y.; Gu, W.; Liu, X. Multifunctional three-dimensional europium metal-organic framework for luminescence sensing of benzaldehyde and Cu2+ and selective capture of dye molecules. Inorg. Chem. 2016, 55, 7862−7828.

    26. [26]

      Goel, N.; Kumar, N. A dual-functional luminescent Tb(III) metal-organic framework for the selective sensing of acetone and TNP in water. RSC Adv. 2018, 8, 10746−10755.  doi: 10.1039/C7RA13494K

    27. [27]

      Zheng, K.; Liu, Z. Q.; Huang, Y.; Chen, F.; Zeng, C. H.; Zhong, S.; Ng, S. W. Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor. Sensor. Actuat. B 2018, 257, 705−713.  doi: 10.1016/j.snb.2017.11.009

    28. [28]

      Ma, D.; Li, B.; Cui, Z.; Liu, K.; Chen, C.; Li, G.; Hua, J.; Ma, B.; Shi, Z.; Feng, S. Multifunctional luminescent porous organic polymer for selectively detecting iron ions and 1, 4-dioxane via luminescent turn-off and turn-on sensing. ACS Appl. Mater. Interfaces 2016, 8, 24097−24103.  doi: 10.1021/acsami.6b07470

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    3. [3]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    4. [4]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    5. [5]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    6. [6]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    7. [7]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    11. [11]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    12. [12]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    13. [13]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    14. [14]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    15. [15]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    16. [16]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    17. [17]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    18. [18]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    19. [19]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    20. [20]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

Metrics
  • PDF Downloads(3)
  • Abstract views(338)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return