Citation: Xiu-Hui ZHAO, De-Huang ZHUO, Qing-Song CHEN, Guo-Cong GUO. Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 376-382. doi: 10.14102/j.cnki.0254–5861.2011–2903 shu

Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology

  • Corresponding author: Qing-Song CHEN, chenqs@fjirsm.ac.cn Guo-Cong GUO, gcguo@fjirsm.ac.cn
  • Received Date: 11 June 2020
    Accepted Date: 9 July 2020

    Fund Project: the National Key R & D Program of China 2017YFA0206802the National Key R & D Program of China 2017YFA0700103the Natural Science Foundation of China 21203200the Natural Science Foundation of China 91545201the Natural Science Foundation of Fujian Province 2017J01036the Natural Science Foundation of Fujian Province 2018J06005

Figures(4)

  • Electroreduction of CO2 to formic acid has attracted extensive attention, because it is a promising strategy to re-utilize CO2 and reduce greenhouse gas emissions that may favor the mitigation of energy and environment issues. Although great efforts have been made to tune the structure and composition of catalysts aiming to improve CO2 conversion efficiency, seldom studies have been focused on the support regulation. In this work, ordered, porous TiO2 nanotube arrays have been used as model support to study the impact of pore structure for CO2 electrochemical reduction. It has been revealed that Pd supported on TiO2 nanotube arrays substrate exhibits enhanced performance towards CO2 reduction, showing a higher formate Faradaic efficiency of 20% over than Pd supported on TiO2 film substrate. This study will shed new light on the design and synthesis of efficient catalysts by tuning the morphology of support for CO2 conversion.
  • 加载中
    1. [1]

      Lu, Q.; Jiao, F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439–456.  doi: 10.1016/j.nanoen.2016.04.009

    2. [2]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016, 28, 3423–3452.  doi: 10.1002/adma.201504766

    3. [3]

      Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catalysis 2016, 6, 2842–2851.  doi: 10.1021/acscatal.6b00269

    4. [4]

      Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun. 2014, 5, 3242.  doi: 10.1038/ncomms4242

    5. [5]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels technological use of CO2. Chem. Rev. 2014, 114, 1709–1742.  doi: 10.1021/cr4002758

    6. [6]

      Zu, M. Y.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Yang, H. G. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J. Mater. Chem. A 2018, 6, 16804–16809.  doi: 10.1039/C8TA05355C

    7. [7]

      Zhang, Y.; Li, F.; Zhang, X.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.  doi: 10.1039/C8TA00023A

    8. [8]

      Avila-Bolivar, B.; Garcia-Cruz, L.; Montiel, V.; Solla-Gullon, J. Electrochemical reduction of CO2 to formate on easily prepared carbon-supported Bi nanoparticles. Molecules 2019, 24, 15.

    9. [9]

      Zhou, F.; Li, H.; Fournier, M.; MacFarlane, D. R. Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation. Chem. Sus. Chem. 2017, 10, 1509–1516.  doi: 10.1002/cssc.201601870

    10. [10]

      Wang, Y.; Zhou, J.; Lv, W. X.; Fang, H. L.; Wang, W. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl. Surf. Sc. 2016, 362, 394–398.  doi: 10.1016/j.apsusc.2015.11.255

    11. [11]

      Han, X. H.; Jin, M. S.; Xie, S. F.; Kuang, Q.; Jiang, Z. Y.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. Engl. 2009, 48, 9180–9183.  doi: 10.1002/anie.200903926

    12. [12]

      Zhang, H.; Ma, Y.; Quan, F. J.; Huang, J. J.; Jia, F. L.; Zhang, L. Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochem. Commun. 2014, 46, 63–66.  doi: 10.1016/j.elecom.2014.06.013

    13. [13]

      Gao, D.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X.; Si, R.; Yang, F.; Miao, S.; Wang, J.; Wang, G.; Bao, X. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.  doi: 10.1007/s12274-017-1514-6

    14. [14]

      Min, X.; Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 2015, 137, 4701–4708.  doi: 10.1021/ja511890h

    15. [15]

      Rahaman, M.; Dutta, A.; Broekmann, P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials. Chem. Sus. Chem. 2017, 10, 1733–1741.  doi: 10.1002/cssc.201601778

    16. [16]

      Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.  doi: 10.1021/jacs.7b12506

    17. [17]

      Irtem, E.; Andreu, T.; Parra, A.; Hernández-Alonso, M. D.; García-Rodríguez, S.; Riesco-García, J. M.; Penelas-Pérez, G.; Morante, J. R. Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE. J. Mater. Chem. A 2016, 4, 13582–13588.  doi: 10.1039/C6TA04432H

    18. [18]

      Youngmin, Y.; Anthony-Shoji, H.; Yogesh, S. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 2016, 55, 15282–15286.  doi: 10.1002/anie.201607942

    19. [19]

      Bitar, Z.; Fecant, A.; Trela-Baudot, E.; Chardon-Noblat, S.; Pasquier, D. Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes — comparison with indium foil. Appl. Catal. B-Environ. 2016, 189, 172–180.

    20. [20]

      Machunda, R. L.; Ju, H.; Lee, J. Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode. Curr. Appl. Phys. 2011, 11, 986–988.  doi: 10.1016/j.cap.2011.01.003

    21. [21]

      Chen, Y. X.; Lavacchi, A.; Chen, S. P.; Benedetto, F.; Bevilacqua, M.; Bianchini, C.; Fornasiero, P.; Innocenti, M.; Marelli, M.; Oberhauser, W.; Sun, S. G.; Vizza, F. Electrochemical milling and faceting: size reduction and catalytic activation of palladium nanoparticles. Angew. Chem. Int. Ed. Engl. 2012, 51, 8500–8504.  doi: 10.1002/anie.201203589

    22. [22]

      Jun, Y.; Park, J. H.; Kang, M. G. The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. Chem. Commun. 2012, 48, 6456–6471.  doi: 10.1039/c2cc30733b

    23. [23]

      Su, Z. X.; Zhou, W. Z. Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 2011, 21, 8955–8970.  doi: 10.1039/c0jm04587j

    24. [24]

      Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. Engl. 2017, 56, 3645–3649.  doi: 10.1002/anie.201612194

    25. [25]

      Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction. ACS Catal. 2018, 8, 1510–1519.  doi: 10.1021/acscatal.7b03612

    26. [26]

      Shao, X. Z.; Xu, J. M.; Huang, Y. Q.; Su, X.; Duan, H. M.; Wang, X. D.; Zhang, T. Pd@C3N4 nanocatalyst for highly efficient hydrogen storage system based on potassium bicarbonate/formate. AIChE J. 2016, 62, 2410–2418.  doi: 10.1002/aic.15218

    27. [27]

      Bai, B.; Chen, Q. S.; Zhao, X. H.; Zhuo, D. H.; Xu, Z. N.; Wang, Z. Q.; Wu, M. Y.; Tan, H. Z.; Peng, S. Y.; Guo, G. C. Enhancing electroreduction of CO2 to formate of Pd catalysts loaded on TiO2 nanotubes arrays by N, B-support modification. ChemistrySelect. 2019, 4, 8626–8633.  doi: 10.1002/slct.201901211

    28. [28]

      Ma, S. C.; Lan, Y. C.; Perez, G. M. J.; Moniri, S.; Kenis, P. J. A. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. Chemsuschem. 2014, 7, 866–874.  doi: 10.1002/cssc.201300934

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    8. [8]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    12. [12]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    13. [13]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    14. [14]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(1)
  • Abstract views(303)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return