Two Novel {Ti6P2} Clusters Decorated with Inorganic Acids
- Corresponding author: Wei-Hui FANG, fwh@fjirsm.ac.cn Yao KANG, ky@fjirsm.ac.cn
Citation:
Ai-Ping ZHENG, Mei-Yan GAO, Wei-Hui FANG, Yao KANG. Two Novel {Ti6P2} Clusters Decorated with Inorganic Acids[J]. Chinese Journal of Structural Chemistry,
;2021, 40(3): 277-282.
doi:
10.14102/j.cnki.0254–5861.2011–2853
Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891‒959.
doi: 10.1021/cr0500535
Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503‒6570.
doi: 10.1021/cr1001645
Rozes, L.; Sanchez, C. Titanium oxo-clusters: precursors for a lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 2011, 40, 1006‒1030.
doi: 10.1039/c0cs00137f
Coppens, P.; Chen, Y.; Trzop, E. Crystallography and properties of polyoxotitanate nanoclusters. Chem. Rev. 2014, 114, 9645‒9661.
doi: 10.1021/cr400724e
Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404‒421.
doi: 10.1039/C7CS00511C
Zhao, C.; Han, Y. Z.; Dai, S.; Chen, X.; Yan, J.; Zhang, W.; Su, H.; Lin, S.; Tang, Z.; Teo, B. K.; Zheng, N. Microporous cyclic titanium-oxo clusters with labile surface ligands. Angew. Chem. Int. Ed. 2017, 56, 16252‒16256.
doi: 10.1002/anie.201709096
Zhang, G.; Liu, C.; Long, D. L.; Cronin, L.; Tung, C. H.; Wang, Y. Water-soluble pentagonal-prismatic titanium-oxo clusters. J. Am. Chem. Soc. 2016, 138, 11097–11100.
doi: 10.1021/jacs.6b06290
Zhang, G.; Li, W.; Liu, C.; Jia, J.; Tung, C. H.; Wang, Y. Titanium-oxide host clusters with exchangeable guests. J. Am. Chem. Soc. 2018, 140, 66‒69.
doi: 10.1021/jacs.7b10565
Chakraborty, B.; Weinstock, I. A. Water-soluble titanium-oxides: complexes, clusters and nanocrystals. Coord. Chem. Rev. 2019, 382, 85‒102.
doi: 10.1016/j.ccr.2018.11.011
Matthews, P. D.; King, T. C.; Wright, D. S. Structure, photochemistry and applications of metal-doped polyoxotitanium alkoxide cages. Chem. Commun. 2014, 50, 12815‒12823.
doi: 10.1039/C4CC04421E
Li, N.; Matthews, P. D.; Luo, H. K.; Wright, D. S. Novel properties and potential applications of functional ligand-modified polyoxotitanate cages. Chem. Commun. 2016, 52, 11180‒11190.
doi: 10.1039/C6CC03788G
Liu, C.; Hu, J.; Liu, W.; Zhu, F.; Wang, G.; Tong, C. H.; Wang, Y. Binding modes of salicylic acids to titanium-oxide molecular surfaces. Chem. Eur. J. 2020, 26, 2666‒2674.
doi: 10.1002/chem.201904302
Wu, Y. Y.; Wang, P.; Wang, Y. H.; Jiang, J. B.; Bian, G. Q.; Zhu, Q. Y.; Dai, J. Metal-phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. J. Mater. Chem. A 2013, 1, 9862‒9868.
doi: 10.1039/c3ta11571b
Hou, J. L.; Weng, Y. G.; Liu, P. Y, ; Cui, L. N.; Zhu, Q. Y.; Dai, J. Effects of the ligand structures on the photoelectric activities, a model study based on titanium-oxo clusters anchored with S-heterocyclic ligands. Inorg. Chem. 2019, 58, 2736‒2743.
doi: 10.1021/acs.inorgchem.8b03310
Fan, Y.; Li, M. H.; Duan, R. H.; Lu, R. H.; Cao, J. T.; Zou, G. D.; Jing, Q. S. Phosphonate-stabilized titanium-oxo clusters with ferrocene photosensitizer: structures, photophysical and photoelectrochemical properties, and DFT/TDDFT calculations. Inorg. Chem. 2017, 56, 12775‒12782.
doi: 10.1021/acs.inorgchem.7b01527
Chaumont, C.; Huen, E.; Huguenard, C.; Mobian, P.; Henry, M. Toward colored reticular titanium-based hybrid networks: evaluation of the reactivity of the [Ti8O8(OOCCH2But)16] wheel with phenol, resorcinol and catechol. Polyhedron 2013, 57, 70‒76.
doi: 10.1016/j.poly.2013.04.021
Hong, K.; Chun, H. Nonporous titanium-oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 2013, 52, 9705‒9707.
doi: 10.1021/ic401122u
Frot, T.; Marrot, J.; Sanchez, C.; Rozes, L.; Sassoye, C. Ti8O10(OOCR)12 R = CH(CH3)2 and CCl3 caboxylate titanium oxo-clusters: potential SBUs for the synthesis of metal-organic frameworks. Z. Anorg. Allg. Chem. 2013, 639, 2181‒2185.
doi: 10.1002/zaac.201300215
Czakler, M.; Artner, C.; Schubert, U. Acetic acid mediated synthesis of phosphonate-substituted titanium oxo clusters. Eur. J. Inorg. Chem. 2014, 2014, 2038‒2045.
doi: 10.1002/ejic.201400051
Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew. Chem. Int. Ed. 2016, 55, 5160‒5165.
doi: 10.1002/anie.201510455
Sheldrick G. M. SADABS: Program for Area Detector Adsorption Correction. Institute for Inorganic Chemistry. University of Göttingen, Germany 1996.
Sheldrick, G. M. SHELXL-2014: Program for Crystal Structure Solution and Refinement. University of Göttingen, Göttingen, Germany 2014.
Zhu, B. C.; Zhang, L.; Zhang, J. Arsanilic acid stabilizing titanium-oxo clusters with various core structures and light absorption behaviours. Inorg. Chem. Commun. 2017, 86, 14‒17.
doi: 10.1016/j.inoche.2017.09.015
Day, V. W.; Eberspacher, T. A.; Chen, Y. W.; Hao, J. L.; Klemperer, W. G. Low-nuclearity titanium oxoalkoxides the trititanates [Ti3O](OPri)10 and [Ti3O](OPri)9(OMe). Inorg. Chim. Acta 1995, 229, 391‒405.
doi: 10.1016/0020-1693(94)04270-6
Senouci, A.; Yaakoub, M.; Huguenard, C.; Henry, M. Molecular templating using titanium(IV) (oxo)alkoxides and titanium(IV) (oxo)aryloxides. J. Mater. Chem. 2004, 14, 3215‒3230.
doi: 10.1039/b406696k
Boyle, T. J.; Tyner, R. P.; Alam, T. M.; Scott, B. L.; Ziller, J. W.; Potter, B. G. Implications for the thin-film densification of TiO2 from carboxylic acid-modified titanium alkoxides. Syntheses, characterizations, X-ray structures of Ti3(μ3-O)(O2CH)2(ONep)8, Ti3(μ3-O)(O2CMe)2(ONep)8, Ti6(μ3-O)6(O2CCHMe2)6(ONep)6, [Ti(μ-O2CCMe3)(ONep)3]2, and Ti3(μ3-O)(O2CCH2CMe3)2(ONep)8 (ONep = OCH2CMe3). J. Am. Chem. Soc. 1999, 121, 12104‒12112.
doi: 10.1021/ja992521w
Corden, J. P.; Errington, W.; Moore, P.; Partridge, M. G.; Wallbridge, H. Synthesis of di-, tri- and penta-nuclear titanium(iv) species from reactions of titanium(iv) alkoxides with 2, 2[prime or minute]-biphenol (H2L1) and 1, 1[prime or minute]-binaphthol (H2L2); crystal structures of [Ti3([μ2-OPri)2(OPri)8L1], [Ti3(OPri)6L13], [Ti5(μ3-O)2(μ2-OR)2(OR)6L14] (R = OPri, OBun) and [Ti2(OPri)4L22]. Dalton Trans. 2004, 1846‒1851.
Pajot, N.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; Vaissermann, J.; Parraud, S. Metal-assisted activation of the C‒O bond of 2-hydroxyethylmethacrylate. Synthesis and molecular structure of Ti5(OPri)9(μ-OPri)(μ, η2-OC2H4O)(μ3, η2-OC2H4O)3(μ4, η2-OC2H4O). Chem. Commun. 1995, 1817‒1819.
Radtke, A.; Piszczek, P.; Muziol, T.; Wojtczak, A. The structural conversion of multinuclear titanium(IV) mu-oxo-complexes. Inorg. Chem. 2014, 53, 10803‒10810.
doi: 10.1021/ic5002545
Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W. Dodecatitanates: a new family of stable polyoxotitanates. J. Am. Chem. Soc. 1993, 115, 8469‒8470.
doi: 10.1021/ja00071a075
Schmid, R.; Mosset, A.; Galy, J. New compounds in the chemistry of group 4 transition-metal alkoxides. Part 4. Synthesis and molecular structures of two polymorphs of [Ti16O16(OEt)32] and refinement of the structure of [Ti7O4(OEt)20]. Dalton Trans. 1991, 1999‒2005.
Campana, C. F.; Chen, Y.; Day, V. W.; Klemperer, W. G.; Sparks, R. A. Polyoxotitanates join the Keggin family: synthesis, structure and reactivity of [Ti18O28H][OBut]17. Dalton Trans. 1996, 691‒702.
Coppens, P.; Chen, Y.; Trzop, E. Crystallography and properties of polyoxotitanate nanoclusters. Chem. Rev. 2014, 114, 9645‒9661.
doi: 10.1021/cr400724e
Narayanam, N.; Fang, W. H.; Chintakrinda, K.; Zhang, L.; Zhang, J. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chem. Commun. 2017, 53, 8078‒8080.
doi: 10.1039/C7CC04388K
Assi, H.; Pardo Pérez, L. C.; Mouchaham, G.; Ragon, F.; Asalevich, M.; Guillou, N. N.; Martineau, C.; Chevreau, H.; Kapteijn, F.; Gascon, J.; Fertey, P.; Elkaim, E.; Serre, C.; Devic, T. Investigating the case of titanium(iv) carboxyphenolate photoactive coordination polymers. Inorg. Chem. 2016, 55, 7192‒7199.
doi: 10.1021/acs.inorgchem.6b01060
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Limin Wang , Feiyi Huang , Xinyi Liang , Rajkumar Devasenathipathy , Xiaotian Liu , Qiulan Huang , Zhongyun Yang , Dujuan Huang , Xinglan Peng , Du-Hong Chen , Youjun Fan , Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501
Liang Dong , Jingkuo Qu , Tuo Zhang , Guanghui Zhu , Ningning Ma , Chang Zhao , Yi Yuan , Xiangjiu Guan , Liejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720