Citation: Ai-Ping ZHENG, Mei-Yan GAO, Wei-Hui FANG, Yao KANG. Two Novel {Ti6P2} Clusters Decorated with Inorganic Acids[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 277-282. doi: 10.14102/j.cnki.0254–5861.2011–2853 shu

Two Novel {Ti6P2} Clusters Decorated with Inorganic Acids

  • Corresponding author: Wei-Hui FANG, fwh@fjirsm.ac.cn Yao KANG, ky@fjirsm.ac.cn
  • Received Date: 17 April 2020
    Accepted Date: 15 June 2020

    Fund Project: National Natural Science Foundation of China 21771181National Natural Science Foundation of China 21935010National Natural Science Foundation of China 21973096Youth Innovation Promotion Association CAS 2017345

Figures(5)

  • Two inorganic acids decorating titanium-oxo clusters (PTCs), Ti6O4(OiPr)10(O3P-Phen)2(NO3)2 (PTC-251) and Ti6O4(OiPr)10(O3P-Phen)2(HSO4)2 (PTC-252) (H2O3P-Phen = phenylphosphinic acid) have been synthesized under solvothermal conditions. As a result of the labile coordination sites of the {Ti6P2} unit, nitrite and sulfate adopt different capping mode. Besides, they also present different space packing. The photocatalytic H2 evolution activities of these obtained PTCs have been studied, with sulfate decorating PTC-252 presenting a maximum H2 production rate up to 110.95 μmol·g-1·h-1.
  • 加载中
    1. [1]

      Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891‒959.  doi: 10.1021/cr0500535

    2. [2]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503‒6570.  doi: 10.1021/cr1001645

    3. [3]

      Rozes, L.; Sanchez, C. Titanium oxo-clusters: precursors for a lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 2011, 40, 1006‒1030.  doi: 10.1039/c0cs00137f

    4. [4]

      Coppens, P.; Chen, Y.; Trzop, E. Crystallography and properties of polyoxotitanate nanoclusters. Chem. Rev. 2014, 114, 9645‒9661.  doi: 10.1021/cr400724e

    5. [5]

      Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404‒421.  doi: 10.1039/C7CS00511C

    6. [6]

      Zhao, C.; Han, Y. Z.; Dai, S.; Chen, X.; Yan, J.; Zhang, W.; Su, H.; Lin, S.; Tang, Z.; Teo, B. K.; Zheng, N. Microporous cyclic titanium-oxo clusters with labile surface ligands. Angew. Chem. Int. Ed. 2017, 56, 16252‒16256.  doi: 10.1002/anie.201709096

    7. [7]

      Zhang, G.; Liu, C.; Long, D. L.; Cronin, L.; Tung, C. H.; Wang, Y. Water-soluble pentagonal-prismatic titanium-oxo clusters. J. Am. Chem. Soc. 2016, 138, 11097–11100.  doi: 10.1021/jacs.6b06290

    8. [8]

      Zhang, G.; Li, W.; Liu, C.; Jia, J.; Tung, C. H.; Wang, Y. Titanium-oxide host clusters with exchangeable guests. J. Am. Chem. Soc. 2018, 140, 66‒69.  doi: 10.1021/jacs.7b10565

    9. [9]

      Chakraborty, B.; Weinstock, I. A. Water-soluble titanium-oxides: complexes, clusters and nanocrystals. Coord. Chem. Rev. 2019, 382, 85‒102.  doi: 10.1016/j.ccr.2018.11.011

    10. [10]

      Matthews, P. D.; King, T. C.; Wright, D. S. Structure, photochemistry and applications of metal-doped polyoxotitanium alkoxide cages. Chem. Commun. 2014, 50, 12815‒12823.  doi: 10.1039/C4CC04421E

    11. [11]

      Li, N.; Matthews, P. D.; Luo, H. K.; Wright, D. S. Novel properties and potential applications of functional ligand-modified polyoxotitanate cages. Chem. Commun. 2016, 52, 11180‒11190.  doi: 10.1039/C6CC03788G

    12. [12]

      Liu, C.; Hu, J.; Liu, W.; Zhu, F.; Wang, G.; Tong, C. H.; Wang, Y. Binding modes of salicylic acids to titanium-oxide molecular surfaces. Chem. Eur. J. 2020, 26, 2666‒2674.  doi: 10.1002/chem.201904302

    13. [13]

      Wu, Y. Y.; Wang, P.; Wang, Y. H.; Jiang, J. B.; Bian, G. Q.; Zhu, Q. Y.; Dai, J. Metal-phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. J. Mater. Chem. A 2013, 1, 9862‒9868.  doi: 10.1039/c3ta11571b

    14. [14]

      Hou, J. L.; Weng, Y. G.; Liu, P. Y, ; Cui, L. N.; Zhu, Q. Y.; Dai, J. Effects of the ligand structures on the photoelectric activities, a model study based on titanium-oxo clusters anchored with S-heterocyclic ligands. Inorg. Chem. 2019, 58, 2736‒2743.  doi: 10.1021/acs.inorgchem.8b03310

    15. [15]

      Fan, Y.; Li, M. H.; Duan, R. H.; Lu, R. H.; Cao, J. T.; Zou, G. D.; Jing, Q. S. Phosphonate-stabilized titanium-oxo clusters with ferrocene photosensitizer: structures, photophysical and photoelectrochemical properties, and DFT/TDDFT calculations. Inorg. Chem. 2017, 56, 12775‒12782.  doi: 10.1021/acs.inorgchem.7b01527

    16. [16]

      Chaumont, C.; Huen, E.; Huguenard, C.; Mobian, P.; Henry, M. Toward colored reticular titanium-based hybrid networks: evaluation of the reactivity of the [Ti8O8(OOCCH2But)16] wheel with phenol, resorcinol and catechol. Polyhedron 2013, 57, 70‒76.  doi: 10.1016/j.poly.2013.04.021

    17. [17]

      Hong, K.; Chun, H. Nonporous titanium-oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 2013, 52, 9705‒9707.  doi: 10.1021/ic401122u

    18. [18]

      Frot, T.; Marrot, J.; Sanchez, C.; Rozes, L.; Sassoye, C. Ti8O10(OOCR)12 R = CH(CH3)2 and CCl3 caboxylate titanium oxo-clusters: potential SBUs for the synthesis of metal-organic frameworks. Z. Anorg. Allg. Chem. 2013, 639, 2181‒2185.  doi: 10.1002/zaac.201300215

    19. [19]

      Czakler, M.; Artner, C.; Schubert, U. Acetic acid mediated synthesis of phosphonate-substituted titanium oxo clusters. Eur. J. Inorg. Chem. 2014, 2014, 2038‒2045.  doi: 10.1002/ejic.201400051

    20. [20]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew. Chem. Int. Ed. 2016, 55, 5160‒5165.  doi: 10.1002/anie.201510455

    21. [21]

      Sheldrick G. M. SADABS: Program for Area Detector Adsorption Correction. Institute for Inorganic Chemistry. University of Göttingen, Germany 1996.

    22. [22]

      Sheldrick, G. M. SHELXL-2014: Program for Crystal Structure Solution and Refinement. University of Göttingen, Göttingen, Germany 2014.

    23. [23]

      Zhu, B. C.; Zhang, L.; Zhang, J. Arsanilic acid stabilizing titanium-oxo clusters with various core structures and light absorption behaviours. Inorg. Chem. Commun. 2017, 86, 14‒17.  doi: 10.1016/j.inoche.2017.09.015

    24. [24]

      Day, V. W.; Eberspacher, T. A.; Chen, Y. W.; Hao, J. L.; Klemperer, W. G. Low-nuclearity titanium oxoalkoxides the trititanates [Ti3O](OPri)10 and [Ti3O](OPri)9(OMe). Inorg. Chim. Acta 1995, 229, 391‒405.  doi: 10.1016/0020-1693(94)04270-6

    25. [25]

      Senouci, A.; Yaakoub, M.; Huguenard, C.; Henry, M. Molecular templating using titanium(IV) (oxo)alkoxides and titanium(IV) (oxo)aryloxides. J. Mater. Chem. 2004, 14, 3215‒3230.  doi: 10.1039/b406696k

    26. [26]

      Boyle, T. J.; Tyner, R. P.; Alam, T. M.; Scott, B. L.; Ziller, J. W.; Potter, B. G. Implications for the thin-film densification of TiO2 from carboxylic acid-modified titanium alkoxides. Syntheses, characterizations, X-ray structures of Ti3(μ3-O)(O2CH)2(ONep)8, Ti3(μ3-O)(O2CMe)2(ONep)8, Ti6(μ3-O)6(O2CCHMe2)6(ONep)6, [Ti(μ-O2CCMe3)(ONep)3]2, and Ti3(μ3-O)(O2CCH2CMe3)2(ONep)8 (ONep = OCH2CMe3). J. Am. Chem. Soc. 1999, 121, 12104‒12112.  doi: 10.1021/ja992521w

    27. [27]

      Corden, J. P.; Errington, W.; Moore, P.; Partridge, M. G.; Wallbridge, H. Synthesis of di-, tri- and penta-nuclear titanium(iv) species from reactions of titanium(iv) alkoxides with 2, 2[prime or minute]-biphenol (H2L1) and 1, 1[prime or minute]-binaphthol (H2L2); crystal structures of [Ti3([μ2-OPri)2(OPri)8L1], [Ti3(OPri)6L13], [Ti5(μ3-O)2(μ2-OR)2(OR)6L14] (R = OPri, OBun) and [Ti2(OPri)4L22]. Dalton Trans. 2004, 1846‒1851.

    28. [28]

      Pajot, N.; Papiernik, R.; Hubert-Pfalzgraf, L. G.; Vaissermann, J.; Parraud, S. Metal-assisted activation of the C‒O bond of 2-hydroxyethylmethacrylate. Synthesis and molecular structure of Ti5(OPri)9(μ-OPri)(μ, η2-OC2H4O)(μ3, η2-OC2H4O)3(μ4, η2-OC2H4O). Chem. Commun. 1995, 1817‒1819.

    29. [29]

      Radtke, A.; Piszczek, P.; Muziol, T.; Wojtczak, A. The structural conversion of multinuclear titanium(IV) mu-oxo-complexes. Inorg. Chem. 2014, 53, 10803‒10810.  doi: 10.1021/ic5002545

    30. [30]

      Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W. Dodecatitanates: a new family of stable polyoxotitanates. J. Am. Chem. Soc. 1993, 115, 8469‒8470.  doi: 10.1021/ja00071a075

    31. [31]

      Schmid, R.; Mosset, A.; Galy, J. New compounds in the chemistry of group 4 transition-metal alkoxides. Part 4. Synthesis and molecular structures of two polymorphs of [Ti16O16(OEt)32] and refinement of the structure of [Ti7O4(OEt)20]. Dalton Trans. 1991, 1999‒2005.

    32. [32]

      Campana, C. F.; Chen, Y.; Day, V. W.; Klemperer, W. G.; Sparks, R. A. Polyoxotitanates join the Keggin family: synthesis, structure and reactivity of [Ti18O28H][OBut]17. Dalton Trans. 1996, 691‒702.

    33. [33]

      Coppens, P.; Chen, Y.; Trzop, E. Crystallography and properties of polyoxotitanate nanoclusters. Chem. Rev. 2014, 114, 9645‒9661.  doi: 10.1021/cr400724e

    34. [34]

      Narayanam, N.; Fang, W. H.; Chintakrinda, K.; Zhang, L.; Zhang, J. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chem. Commun. 2017, 53, 8078‒8080.  doi: 10.1039/C7CC04388K

    35. [35]

      Assi, H.; Pardo Pérez, L. C.; Mouchaham, G.; Ragon, F.; Asalevich, M.; Guillou, N. N.; Martineau, C.; Chevreau, H.; Kapteijn, F.; Gascon, J.; Fertey, P.; Elkaim, E.; Serre, C.; Devic, T. Investigating the case of titanium(iv) carboxyphenolate photoactive coordination polymers. Inorg. Chem. 2016, 55, 7192‒7199.  doi: 10.1021/acs.inorgchem.6b01060

  • 加载中
    1. [1]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    4. [4]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    5. [5]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    6. [6]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    7. [7]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    8. [8]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    9. [9]

      Chu WuZhichao DongJinfang HouJian PengShuangyu WuXiaofang WangXiangwei KongYue Jiang . Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges. Chinese Chemical Letters, 2025, 36(3): 110438-. doi: 10.1016/j.cclet.2024.110438

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    13. [13]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    14. [14]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    15. [15]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    16. [16]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    17. [17]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    18. [18]

      Limin Wang Feiyi Huang Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501

    19. [19]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    20. [20]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

Metrics
  • PDF Downloads(3)
  • Abstract views(335)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return